Response Functions of Correlated Systems in the Linear Regime and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Response Functions of Correlated Systems in the Linear Regime and Beyond Response functions of correlated systems in the linear regime and beyond Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von M.Sc. Agnese Tagliavini aus Ferrara, Italien Tübingen, 2018 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eber- hard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 9 November 2018 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Sabine Andergassen 2. Berichterstatter: Prof. Dr. Alessandro Toschi Abstract The technological progress in material science has paved the way to engineer new con- densed matter systems. Among those, fascinating properties are found in presence of strong correlations among the electrons. The maze of physical phenomena they exhibit is coun- tered by the difficulty in devising accurate theoretical descriptions. This explains the plethora of approximated theories aiming at the closest reproduction of their properties. In this respect, the response of the system to an external perturbation bridges the experi- mental evidence with the theoretical description, representing a testing ground to prove or disprove the validity of the latter. In this thesis we develop a number of theoretical and numerical strategies to improve the computation of linear response functions in several of the forefront many-body techniques. In particular, the development of computationally efficient schemes, driven by physical arguments, has allowed (i) improvements in treating the local two-particle correlations and scattering functions, which represent essential building blocks for established non- perturbative theories, such as dynamical mean field theory (DMFT) and its diagrammatic extensions and (ii) the implementation of the groundbreaking multiloop functional renor- malization group (mfRG) technique and its application to a two-dimensional Hubbard model. Together with (i), the multiloop scheme has promoted the functional RG to pro- vide quantitative predictions. As the mfRG is able to build up a complete subset of Feyn- man diagrams, such as those of the parquet approximation, its results are independent on the choice of the cutoff scheme as well as on the way (direct or through a post-processing treatment) response functions are calculated. We demonstrate by hand of precise numerical calculations that both properties are fulfilled by a satisfactory degree of accuracy. We also elaborate how these properties could be exploited in the future for improving the numeri- cal solution of parquet-based algorithms. Finally, our study reveals that an important piece of physical information can be accessed by looking at the nonlinear response of the system to an external field. In particular, a DMFT study of the pairing response function to a superconducting probe beyond the lin- ear regime, has pinpointed a simple criterion to identify the presence of a preformed pair phase. This result provides a complementary information to cutting-edge theoretical ap- proaches and, possibly, to non-equilibrium experiments, to shed some light on the nature of the pseudogap in high-Tc superconductors. iii Zusammenfassung Der technologische Fortschritt in der Materialwissenschaft hat die Entwicklung neuar- tiger Systeme ermöglicht, deren starke elektronische Korrelationen faszinierende Eigen- schaften aufweisen. Der Vielzahl an physikalischen Phänomenen steht die Schwierigkeit einer genauen theoretischen Beschreibung gegenüber. Das hat Anlass zur Entwicklung ver- schiedener theoretischer Näherungsmethoden gegeben. In diesem Zusammenhang stellt die Antwort des Systems auf eine externe Störung eine Möglichkeit dar, eine theoretische Beschreibung durch experimentelle Nachweise zu untermauern oder zu widerlegen. In dieser Doktorarbeit entwicklen wir theoretische und numerische Ansätze, um die Berech- nung der linearen Antwortfunktionen in verschiedenen modernen Quantenvielteilchen- methoden zu verbessern. Die effiziente numerische Handhabung, die durch physikalis- che Überlegungen inspiriert ist, gestattete einerseits (i) Verbesserungen in der Behand- lung von zweiteilchen Korrelationen sowie Streufunktionen, die wiederum essentielle Be- standteile nicht-perturbativer Theorien sind, wie z.B. der dynamischen Molekularfeldthe- orie (DMFT) und ihrer diagrammatischen Erweiterungen, und ermöglichte andererseits (ii) die Implementierung der wegweisenden multiloop-funktionalen Renormierungsgrup- pentheorie (mfRG) und deren Anwendung auf das zweidimensionale Hubbard Modell. Durch die Errungenschaften aus (i) und der Verwendung des Multiloopschemas ermöglicht die funktionale RG quantitative Vorhersagen. Die inhärente Eigenschaft der mfRG, eine vollständige Teilmenge der Feynmandiagramme zu erzeugen, hier insbesondere die Dia- gramme der parquet Näherung, fuehrt ausserdem dazu, dass ihre Resultate “cutoff” un- abhängig sind und die Art und Weise der Berechnung der Antwortfunktionen (entweder mittels des Renormierungsgruppenflusses oder als “post-processing” der fRG Rechnung) keine Rolle spielen. Wir zeigen anhand numerischer Berechnungen, dass beide oben genan- nten analytischen Eigenschaften der mfRG erfüllt sind. Außerdem diskutieren wir, dass diese Eigenschaften einen bedeutenden Beitrag in der numerischen Konvergens parque- basierter Algorithmen liefern können. Schließlich zeigt unsere Untersuchung, dass die nichtlineare Antwort eines Materials auf ein externes Störungsfeld wichtige physikalische Information enthält. Insbesondere hat eine Betrachtung der Antwortfunktion der Paarbildung auf ein Supraleitungsfeld im nicht- linearen Regime im Rahmen der DMFT, ein einfaches Kriterium für das Vorhandensein einer “preformed pair phase” aufgezeigt. Dieses Resultat liefert neue Einblicke in aktuelle theoretische und experimentelle Methoden der Vielteilchenphysik, um die Hintergründe der Entsehung einer Pseudogap in Hochtemperatursupraleitern zu beleuchten. iv List of diagrammatic symbols Self-energy: Σ 1P Green’s function: G Used in both non-interacng and interact- ing (“dressed”) cases. The arrow specifies the direcon of propagaon. 2P vertex functions: Filled square ! Full 2P vertex γ4. Empty square ! 2P reducible vertex ϕr: (a) Red framed for r = pp; (b) Green framed for r = ph; (c) Blue framed for r = ph. Diagonally striped square ! 2PI vertex Ir: (a) Green-blue stripes for r = pp; (b) Red-blue stripes for r = ph; (c) Green-red stripes for r = ph. 3P vertex function: γ6 nonlocal interaction: Filled wiggle line: nonlocal (possibly dynamic) effecve interacon (Veff) Simple wiggle line: nonlocal (bare) Coulomb interacon (V (q)) Physical susceptibility: χη=sc,d,m Filled circe: Full vertex-corrected suscepbility Empty circle: Non-vertex corrected suscepbil- η ity (bare bubble) χ0 v η=sc,d,m 3-point vertex: γ3 Filled triangle: Full screened 3-point fermion- boson vertex Small empty circle: Bare 3-point fermion-boson η vertex γ0;3 η=sc,d,m 4-point vertex: γ~4 4-point fermion-boson vertex η=sc,d,m 5-point vertex: γ5 5-point fermion-boson vertex vi Contents List of Diagrammatic Symbols v 1 Introduction 1 1.1 Introduction and Motivation ........................ 1 1.2 Structure of the work ............................ 7 2 Theory and formalism 9 2.1 Response function theory: linear regime and beyond ............ 9 2.1.1 Microscopic Response Theory: formalism and analytical properties 9 2.1.2 Kramers-Kronig relations ...................... 11 2.1.3 Thermodynamic susceptibility in functional integral formalism .. 12 2.1.4 Correlation function of fermionic bilinears: from asymptotic solutions to diagrammatic approaches .................... 15 2.1.5 Critical phenomena: fluctuations and response functions ..... 25 2.2 Investigating response functions in many-body systems: an overview .... 27 2.2.1 Lindhard response theory ..................... 28 2.2.2 Linear response function in dynamical mean-field theory ..... 29 2.2.3 Beyond DMFT: nonlocal effects at the two-particle level in DΓA .. 31 2.2.4 Linear response function in the functional renormalization group . 33 2.2.5 Beyond DMFT: nonlocal effects at two-particle level in DMF2RG . 39 3 Full many-body treatment of the response functions: from vertex corrections to higher order contributions 41 3.1 The high-frequency regime of the two-particle vertex: an AIM study .... 43 3.2 From DMFT to its diagrammatic extensions ................ 49 3.3 nonlocal response functions in multiloop functional RG .......... 54 3.4 Beyond the linear response regime: A DMFT study of the pseudogap physics 62 4 Conclusions and Outlook 67 Appendix A Lehmann representation of the linear response function and the fermion- boson vertex 73 vii Appendix B SU(2)P symmetry: degeneracy of nonlocal susceptibilities 77 Supplements 83 Personal contribution to publications ....................... 83 I High-frequency asymptotics of the vertex function: diagrammatic parametriza- tion and algorithmic implementation .................... 87 II Efficient Bethe-Salpeter equations treatment in dynamical mean-field theory . 113 III Multiloop functional renormalization group for the two-dimensional Hub- bard model: Loop convergence of the response functions ......... 131 IV Detecting a preformed pair phase: Response to a pairing forcing field .... 179 References 210 viii Tomy grandfather Franco and his unstoppable sense of humor. ix Acknowledgments The last years have been a challenging adventure both form a scientific and, much more important, form
Recommended publications
  • 2008-11-03 9806788.Pdf
    Abstract The linear response function, which describes the change in the electron density induced by a change in the external potential, is the basis for a broad variety of applications. Three of these are addressed in the present thesis. In the first part, optical spectra of metallic surfaces are investigated. Quasiparticle energies, i.e., energies required to add or remove an electron from a system, are evaluated for selected metals in the second part. The final part of this thesis is devoted to an improved description of the ground-state electron correlation energy. In the first part, the linear response function is used to evaluate optical properties of metallic surfaces. In recent years, reflectance difference (RD) spectroscopy has provided a sensitive experimental method to detect changes in the surface structure and morphology. The interpretation of the resulting spectra, which are linked to the anisotropy of the surface dielectric tensor, however, is often difficult. In the present thesis, we simulate RD spectra for the bare, as well as oxygen and carbon monoxide covered, Cu(110) surface, and assign features in these spectra to the corresponding optical transitions. A good qualitative agreement between our RD spectra and the experimental data is found. Density functional theory (DFT) gives only access to the ground state energy. Quasi- particle energies should, however, be addressed within many body perturbation theory. In the second part of this thesis, we investigate quasiparticle energies for the transition metals Cu, Ag, Fe, and Ni using the Green’s function based GW approximation, where the screened Coulomb interaction W is linked to the linear response function.
    [Show full text]
  • 1 Response Functions in TDDFT: Concepts and Implementation
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC 1 Response functions in TDDFT: concepts and implementation David A. Strubbe, Lauri Lehtovaara, Angel Rubio, Miguel A. L. Marques, and Steven G. Louie David A. Strubbe Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA [email protected] Lauri Lehtovaara Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, Univer- sit´eClaude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France [email protected] Angel Rubio Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Dpto. F´ısica de Materiales, Universidad del Pa´ıs Vasco, Centro de F´ısica de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebasti´an, Spain and Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin D-14195, Germany [email protected] Miguel A. L. Marques Laboratoire de Physique de la Mati`ere Condens´ee et Nanostructures, Univer- sit´eClaude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France [email protected] Steven G. Louie Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720-7300, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA [email protected] Many physical properties of interest about solids and molecules can be considered as the reaction of the system to an external perturbation, and can be expressed in terms of response functions, in time or frequency and in real or reciprocal space.
    [Show full text]
  • Quantum Systems: Introduction • to Further Apply Linear Response Theory to Spectroscopic Problems We Need to Extend the Formalism to Quantum Systems
    University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Lecture 21: Survey of Quantum Statistics 05/17/10 J.L. McHale “Molecular Spectroscopy” Prentiss-Hall, 1999. McQuarrie: Ch. 21-8 R. Kubo “The Fluctuation-Dissipation Theorem” Rep. Prog. Phys. 29, 255 1966. R. Kubo, Statistical Mechanical Theory of Irreversible Processes I. J. Phys. Soc. Jpn. 12(6), 570 1957. A. Summary of Linear Response Theory • In the last few lectures we established several key relationships. This includes the displacement of a property B of a system from equilibrium by the application of a weak field t ∆=B tBtB − = dsFstsφ − (21.1) () () 0 ∫ ()BA ( ) −∞ where the linear response or after-effect function is 1 φ tdXfBtA===−,0 BtA ,0 BtA 0 (21.2) BA ()∫ 0 {} () ( ) {}() ( ) () ( ) kTB • If the field is time dependent i.e. Ft( ) = Fω cosω tthen t ⎡ ∞ ⎤ ∆=B tdsFstsFeeφ −=Re itωωτ− i φττ d ()∫∫ ()BA ( )ω ⎢ BA ( ) ⎥ −∞ ⎣ 0 ⎦ (21.3) ⎡⎤itω ′′′ ==+FeωωRe⎣⎦χωBA () F() χω () cos ωχω t () sin ω t • In equation (21.3) χ ()ωχωχω=−′( ) i ′′ ( ) is the one-sided Fourier transform of the response function and is called the complex susceptibility. The real part is related to the cycle-averaged reversible work done by the field on the system Uω and the imaginary part is related to the dissipation of energy from the field by the system Dω . FF22ω U=⋅ωωχ′′′()ωχω and D = () (21.4) ωω22BA BA • A fundamental relationship between the imaginary part of the susceptibility and the correlation function is the fluctuation-dissipation theorem: ω ∞ χ′′ ωω= dt A0cos B t t (21.5) BA () ∫ () () kT 0 • Finally, as a result of the causality of the linear response function (φBA ()t = 0 if t<0) the real and imaginary parts of the complex susceptibility are related by the Kramers-Kronig relations: 2 +∞ yyχ′′ ( ) χω′()=℘ dy πω∫ y22− 0 (21.6) 2ω +∞ χ′()y χω′′ =− ℘ dy () ∫ 22 πω0 y − • The physical meaning of the real and imaginary parts of the complex susceptibility can be given further meaning by way of example.
    [Show full text]
  • Capacitance Contents
    Capacitance Contents 1 Capacitance 1 1.1 Capacitors ............................................... 1 1.1.1 Voltage-dependent capacitors ................................. 2 1.1.2 Frequency-dependent capacitors ............................... 2 1.2 Capacitance matrix .......................................... 3 1.3 Self-capacitance ............................................ 4 1.4 Stray capacitance ........................................... 4 1.5 Capacitance of simple systems .................................... 4 1.6 Capacitance of nanoscale systems ................................... 4 1.6.1 Single-electron devices .................................... 5 1.6.2 Few-electron devices ..................................... 5 1.7 See also ................................................ 6 1.8 References ............................................... 6 1.9 Further reading ............................................ 7 2 Dielectric 8 2.1 Terminology .............................................. 8 2.2 Electric susceptibility ......................................... 8 2.2.1 Dispersion and causality ................................... 9 2.3 Dielectric polarization ......................................... 9 2.3.1 Basic atomic model ...................................... 9 2.3.2 Dipolar polarization ...................................... 10 2.3.3 Ionic polarization ....................................... 10 2.4 Dielectric dispersion .......................................... 10 2.5 Dielectric relaxation .........................................
    [Show full text]
  • Linear Response in Theory of Electron Transfer Reactions As an Alternative to the Molecular Harmonic Oscillator Model Yuri Georgievskii, Chao-Ping Hsu, and R
    JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 11 15 MARCH 1999 Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model Yuri Georgievskii, Chao-Ping Hsu, and R. A. Marcus Noyes Laboratory of Chemical Physics, Mail Code 127-72, California Institute of Technology, Pasadena, California 91125 ~Received 21 October 1998; accepted 16 December 1998! The effect of solvent fluctuations on the rate of electron transfer reactions is considered using linear response theory and a second-order cumulant expansion. An expression is obtained for the rate constant in terms of the dielectric response function of the solvent. It is shown thereby that this expression, which is usually derived using a molecular harmonic oscillator ~‘‘spin-boson’’! model, is valid not only for approximately harmonic systems such as solids but also for strongly molecularly anharmonic systems such as polar solvents. The derivation is a relatively simple alternative to one based on quantum field theoretic techniques. The effect of system inhomogeneity due to the presence of the solute molecule is also now included. An expression is given generalizing to frequency space and quantum mechanically the analogue of an electrostatic result relating the reorganization free energy to the free energy difference of two hypothetical systems @J. Chem. Phys. 39, 1734 ~1963!#. The latter expression has been useful in adapting specific electrostatic models in the literature to electron transfer problems, and the present extension can be expected to have a similar utility. © 1999 American Institute of Physics. @S0021-9606~99!01511-1# I. INTRODUCTION approach of Levich and Dogonadze, subsequently used as a common model to treat quantum aspects of ET reactions,14,15 Interaction with an environment plays a crucial role in required justification.
    [Show full text]
  • PHY-892 Problème À N-Corps (Notes De Cours)
    PHY-892 Problème à N-corps (notes de cours) André-Marie Tremblay Automne 2005 2 Contents I Introduction: Correlation functions and Green’s func- tions. 11 1Introduction 13 2 Correlation functions 15 2.1 Relation between correlation functions and experiments . 16 2.2Linear-responsetheory......................... 19 2.2.1 SchrödingerandHeisenbergpictures.............. 20 2.2.2 Interactionpictureandperturbationtheory......... 21 2.2.3 Linearresponse......................... 23 2.3Generalpropertiesofcorrelationfunctions.............. 24 2.3.1 Notations and definitions................... 25 2.3.2 Symmetrypropertiesoftheresponsefunctions....... 26 2.3.3 Kramers-Kronigrelationsandcausality........... 31 2.3.4 Positivity of ωχ00(ω) anddissipation............. 35 2.3.5 Fluctuation-dissipationtheorem................ 36 2.3.6 Sumrules............................ 38 2.4Kuboformulafortheconductivity.................. 41 2.4.1 Response of the current to external vector and scalar potentials 42 2.4.2 Kuboformulaforthetransverseresponse.......... 43 2.4.3 Kuboformulaforthelongitudinalresponse......... 44 2.4.4 Metals, insulators and superconductors . .......... 49 2.4.5 Conductivity sum rules at finite wave vector, transverse and longitudinal........................... 52 2.4.6 Relation between conductivity and dielectric constant . 54 3 Introduction to Green’s functions. One-body Schrödinger equa- tion 59 3.1 Definition of the propagator, or Green’s function .......... 59 3.2 Information contained in the one-body propagator ......... 60 3.2.1 Operatorrepresentation....................
    [Show full text]