Steady-State/Hopf Interaction in the Van Der Pol Oscillator with Delayed Feedback

Total Page:16

File Type:pdf, Size:1020Kb

Steady-State/Hopf Interaction in the Van Der Pol Oscillator with Delayed Feedback Steady-state/Hopf interaction in the van der Pol oscillator with delayed feedback Jason Bramburger Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Science in Mathematics 1 Department of Mathematics and Statistics Faculty of Science University of Ottawa c Jason Bramburger, Ottawa, Canada, 2013 1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa- Carleton Institute of Mathematics and Statistics Abstract In this thesis we consider the traditional Van der Pol Oscillator with a forcing de- pendent on a delay in feedback. The delay is taken to be a nonlinear function of both position and velocity which gives rise to many different types of bifurcations. In particular, we study the Zero-Hopf bifurcation that takes place at certain parameter values using methods of centre manifold reduction of DDEs and normal form theory. We present numerical simulations that have been accurately predicted by the phase portraits in the Zero-Hopf bifurcation to confirm our numerical results and provide a physical understanding of the oscillator with the delay in feedback. ii Acknowledgements Thank you to my supervisors Dr. Victor Leblanc and Dr. Benoit Dionne for their guidance and support along the way and to the University of Ottawa for this oppor- tunity to further my education. iii Dedication This work is dedicated to my family for all of their support along the way. iv Contents List of Figures vii 1 Introduction 1 2 The Characteristic Equation 5 3 A Pure Imaginary Pair and a Simple Zero Eigenvalue 9 4 The Centre Manifold Reduction of DDEs 19 4.1 Necessary Terms in the Normal Form . 22 5 The Reduced System 26 6 Bifurcation Diagrams 44 7 Numerical Simulations 48 7.1 Simulation 1: The Nontrivial Fixed Point . 49 7.2 Simulation 2: The Stable Limit Cycle . 51 7.3 Simulation 3: The Invariant Torus . 53 8 Final Thoughts 60 A Calculation of the terms hijk 63 v CONTENTS vi B MATLAB Code 69 Bibliography 74 List of Figures 2.1 Diagram of the ("; a)-plane. The shaded area shows where complex conjugate roots of the characteristic equation occur. .6 3.1 The six topological types for the normal form given in (3:4). 11 3.2 The universal unfolding when b = +1, a > 0. On the curve µ2 = 2 2 µ1=a phase portraits are homeomorphic to those above the curve, but the lower saddle is degenerate if µ1 > 0 and the upper saddle is degenerate if µ1 < 0............................ 13 3.3 The universal unfolding when b = +1, a < 0. On the curve µ2 = 2 2 µ1=a phase portraits are topologically equivalent to those above the branches of the curve. The phase portrait at the origin is determined by the value of a; the left case being when a ≤ −1 and the right when a 2 (−1; 0). ............................ 15 3.4 The universal unfolding when b = −1, a < 0. On the curve µ2 = 2 2 µ1=a phase portraits are topologically equivalent to those below the branches of the curve. The phase portrait at the origin is determined by the value of a; the left case being when a 2 [−1; 0) and the right when a < −1. .............................. 16 vii LIST OF FIGURES viii 3.5 The universal unfolding when b = −1, a > 0. On the curve µ2 = 2 2 µ1=a phase portraits are topologically equivalent to those below the branches of the curve. 17 7.1 An unstable limit cycle bringing trajectories close then pushing them towards a nontrivial fixed point at approximately x = 0:3357. 50 7.2 (a) Multiple trajectories projected onto the centre manifold and con- verted to cylindrical coordinates and (b) the phase portrait predicted in Chapter 3. 51 7.3 A stable limit cycle in the system for (µ1; µ2) = (−0:02; 0:0495). 52 7.4 (a) Multiple trajectories projected onto the centre manifold and con- verted to cylindrical coordinates and (b) the phase portrait predicted in Chapter 3. The fixed point that trajectories converge to relates to a limit cycle in the original system. 53 7.5 A phase-locked periodic solution occurring on the stable invariant torus on the centre manifold when (µ1; µ2) = (−0:05; −0:2). 55 7.6 The one dimensional system showing a modulated oscillation relat- ing to a torus on the centre manifold. 55 7.7 (a) Projecting multiple trajectories of the system onto the centre manifold reveals a stable limit cycle in cylindrical coordinates and (b) The phase portrait predicted in Chapter 3. The limit cycle is given roughly by the dotted line. 56 7.8 A stable and unstable limit cycle within the invariant torus when (µ1; µ2) = (−0:02; −0:054). 58 Chapter 1 Introduction In 1920, while working as an engineer, Balthasar van der Pol published A theory of the amplitude of free and forced triode vibrations [15] in which he presented the oscillator that bears his name, given by x¨(t) + "(x2(t) − 1)x _(t) + x(t) = f(t); (1.1) where " > 0. Originally equation (1:1) was a model for an electrical circuit with a triode valve, and it has evolved into one of the most celebrated equations in the study of nonlinear dynamics. Van der Pol found that in the unforced system (when f ≡ 0) the trivial equilib- rium point is unstable and the system contains a stable oscillation for all values of ". He also explored the effect of a periodic forcing on his oscillator, which for example, can be given by 2πt x¨(t) + "(x2(t) − 1)x _(t) + x(t) = A cos : (1.2) T Upon adding this periodic forcing, van der Pol found that much more complicated phenomena could arise in the system. As the study of nonlinear differential equations has progressed, it has become known that the system exhibits chaotic behaviour when the nonlinearity becomes larger (i.e. " = 8:53). Because of the many different 1 1. Introduction 2 examples of nonlinear dynamics that occur in the system, the van der Pol oscillator has become a recurring example in modern mathematics. The van der Pol oscillator has become synonymous with modern systems that exhibit limit cycle oscillations in many far reaching branches of the physical sciences. Kaplan et al. provide a simple example of a biological application of the van der Pol oscillator to the dynamics of the heart [9], and the FitzHugh-Nagumo model is a modified form of the oscillator that has direct applications to neurones in the brain. On the larger scale, Cartwright et al. showed that the van der Pol oscillator can be used to model earthquake faults with viscous friction [3]. All of these applications and many more make the van der Pol oscillator one of the most widely celebrated differential equations in mathematics and one that is just as relevant today as the day that van der Pol himself presented the equation. Despite all of these applications of the van der Pol oscillator, it wasn't until around the start of the twenty-first century, almost eighty years after van der Pol introduced his equation, that mathematicians began to experiment with the effect of delays on the equation. Delay differential equations have proven to be useful in many physical problems ranging from the study of neural networks to the cutting of metal (see [13; 14]). For this reason, it is especially useful to study the effect of delays on one of the most famous nonlinear differential equations in all of mathematics to observe the power that a lag in communication can have over a dynamical system. Atay [2] studied the equation x¨(t) + "(x2(t) − 1)x _(t) + x(t) = "kx(t − τ); (1.3) where τ > 0 is a delay, and found that the stability of the limit cycle present in the system now depended on the amount of delay applied to the system. A similar study was presented by Oliveira [12], in which they added delays in the nonlinear terms of the unforced system, and found that periodic solutions still existed under certain conditions. Both of these studies confirmed that the effect of adding a delay 1. Introduction 3 to the equation can vastly affect the behaviour of the system and provide us with an outcome not easily predicted upon first inspection. It was Wei and Jiang [16; 17] who considered the forcing on the equation as a nonlinear function of the delay in position, x(t), given by x¨(t) + "(x2(t) − 1)x _(t) + x(t) = g(x(t − τ)): (1.4) They found that under certain conditions single, double and triple zero eigenvalues were possible as well as a purely imaginary pair with a zero eigenvalue. The cases of the single and double zero eigenvalues were presented in [17] and [8], respectively, with full details of the nature of their respective bifurcations. Later, Wu and Wang [19] undertook the bifurcation analysis of the purely imaginary pair and the zero eigenvalue to find that a Zero-Hopf bifurcation was occurring. They found that under certain conditions only two of the four possible bifurcation diagrams of the Zero-Hopf bifurcation were possible due to restrictions put in place by the initial assumptions on the nonlinear forcing. In this thesis we consider the van der Pol oscillator with general nonlinear delayed damping, x¨(t) + "(x2(t) − 1)x _(t) + x(t) = g(_x(t − τ); x(t − τ)); (1.5) 3 where g 2 C , g(0; 0) = 0, gx_ (0; 0) = a and gx(0; 0) = b, and work to understand its dynamics.
Recommended publications
  • Student Version an Interactive Illustration of the Van Der Pol Oscillator
    STUDENT VERSION AN INTERACTIVE ILLUSTRATION OF THE VAN DER POL OSCILLATOR Mark A. Lau Kwan Electrical Engineering University of Turabo Gurabo PUERTO RICO STATEMENT The purpose of this paper is to present an interactive spreadsheet application that allows the reader to investigate the Van der Pol oscillator. Through a number of suggested activities, the reader will gain a better understanding of the qualitative behavior of solutions as the parameters of the governing differential equation are varied. A Brief Description of the Van der Pol Oscillator The Van der Pol oscillator is described by the nonlinear, second-order ordinary differential equation x¨ + µ(x2 − 1)x _ + !2x = 0; (1) where µ and ! are positive parameters, and x (a function of time t) is the quantity of interest (e.g., position or voltage). The quantitiesx _ andx ¨ denote the first- and second-order derivative with respect to time t, respectively. This celebrated equation (1) is attributed to the Dutch electrical engineer Balthasar Van der Pol, who pioneered experimental investigations in nonlinear dynamics in the early days of radio and telecommunications. He proposed his equation in order to describe the nonlinear oscillations produced by self-sustained oscillating triode circuits [5]. His equation has been extensively studied and finds numerous applications in engineering, physics, biology, sociology, and economics. The Van der Pol equation (1) introduces a nonlinear damping term, namely µ(x2 − 1)x _. Unlike the familiar linearly damped harmonic oscillator, the presence of the nonlinear damping term can 2 Van der Pol Oscillator Figure 1. Main user interface of the Microsoft Excel spreadsheet for investigating the behavior of the Van der Pol oscillator.
    [Show full text]
  • Van Der Pol Meets LSTM
    bioRxiv preprint doi: https://doi.org/10.1101/330548; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Learning Nonlinear Brain Dynamics: van der Pol Meets LSTM Germán Abrevaya Aleksandr Aravkin Departamento de Física, FCEyN Department of Applied Mathematics Universidad de Buenos Aires University of Washington & IFIBA, CONICET Seattle, WA Buenos Aires, Argentina [email protected] [email protected] Guillermo Cecchi Irina Rish Pablo Polosecki IBM Research IBM Research IBM Research Yorktown Heights, NY Yorktown Heights, NY Yorktown Heights, NY [email protected] [email protected] [email protected] Peng Zheng Silvina Ponce Dawson Department of Applied Mathematics Departamento de Física, FCEyN University of Washington Universidad de Buenos Aires Seattle, WA & IFIBA, CONICET [email protected] Buenos Aires, Argentina [email protected] Abstract Many real-world data sets, especially in biology, are produced by highly multivari- ate and nonlinear complex dynamical systems. In this paper, we focus on brain imaging data, including both calcium imaging and functional MRI data. Standard vector-autoregressive models are limited by their linearity assumptions, while nonlinear general-purpose, large-scale temporal models, such as LSTM networks, typically require large amounts of training data, not always readily available in biological applications; furthermore, such models have limited interpretability. We introduce here a novel approach for learning a nonlinear differential equation model aimed at capturing brain dynamics. Specifically, we propose a variable-projection optimization approach to estimate the parameters of the multivariate (coupled) van der Pol oscillator, and demonstrate that such a model can accurately repre- sent nonlinear dynamics of the brain data.
    [Show full text]
  • Arxiv:Cond-Mat/0212203V1
    A nonlinear dynamical model of human gait Bruce J. West1,2,3 and Nicola Scafetta.1,2 1 Pratt School of EE Department, Duke University, P.O. Box 90291, Durham, NC 27701. 2 Physics Department, Duke University, Durham, NC 27701. and 3 Mathematics Division, Army Research Office, Research Triangle Park, NC 27709. (Dated: September 27, 2018) We present a nonlinear stochastic model of the human gait control system in a variety of gait regimes. The stride interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations become more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. The human locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The central nervous system is coupled to the motocontrol system, and together they control the locomotion of the gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external force associated with the conscious act of walking in a particular way. PACS numbers: 05.45.-a,87.18.Sn, 05.45.Df, 87.17.Nn I. INTRODUCTION neural firing activity. The dynamics of human gate may also be voluntarily forced, for example, by following the Walking is a complex process which we have only re- frequency of a metronome. We model the complex gait cently begun to understand through the application of system by assuming that the amplitude of the impulses of nonlinear data processing techniques [1, 2, 3, 4] to study the correlated firing neural centers regulate only the un- interval data.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cuftura! XA0053813 Organization International Centre International Atomic Energy Agency for Theoretical Physics
    the abdus salam united nations educational, scientific and cuftura! XA0053813 organization international centre international atomic energy agency for theoretical physics HARMONIC OSCILLATIONS, CHAOS AND SYNCHRONIZATION IN SYSTEMS CONSISTING OF VAN DER POL OSCILLATOR COUPLED TO A LINEAR OSCILLATOR P. Woafo i 31-09 J IC/99/188 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS HARMONIC OSCILLATIONS, CHAOS AND SYNCHRONIZATION IN SYSTEMS CONSISTING OF VAN DER POL OSCILLATOR COUPLED TO A LINEAR OSCILLATOR P. Woafo1 Laboratoire de Mecanique, Faculte des Sciences, Universite de Yaounde I, B.P. 812, Yaounde, Cameroon and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Abstract This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. MIRAMARE - TRIESTE December 1999 'Regular Associate of the Abdus Salam ICTP. I- Introduction Due to their occurrence in various scientific fields, ranging from biology, chemistry, physics to engineering, coupled nonlinear oscillators have been a subject of particular interest in recent years [1,2,3]. Among these coupled systems, a particular class is that containing self-sustained components such as the classical Van der Pol oscillator.
    [Show full text]
  • Hopf Bifurcation and Stability of Periodic Solutions for Van Der Pol
    Nonlinear Analysis 62 (2005) 141–165 www.elsevier.com/locate/na Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delayଁ WenwuYu, Jinde Cao ∗ Department of Mathematics, Southeast University, Nanjing 210096, China Received 5 January 2005; accepted 9 March 2005 Abstract In this paper, the van der Pol equation with a time delay is considered, where the time delay is regarded as a parameter. It is found that Hopf bifurcation occurs when this delay passes through a sequence of critical value. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manifold theorem. © 2005 Published by Elsevier Ltd. Keywords: Van der Pol equation; Time delay; Hopf bifurcation; Periodic solutions 1. Introduction The well-known van der Pol equation, which describes the oscillations is the second-order nonlinear damped system governed by x(t)˙ = y(t) − f (x(t)), y(t)˙ =−x(t). (1.1) This model is considered as one of the most intensely studied system in nonlinear system [9,12,23] and has served as a basic model in physics, electronics, biology, neurology and ଁ This work was jointly supported by the National Natural Science Foundation of China under Grant 60373067, the 973 Program of China under Grant 2003CB317004, the Natural Science Foundation of Jiangsu Province, China under Grants BK2003053, Qing-Lan Engineering Project of Jiangsu Province, China. ∗ Corresponding author. Tel.: +86 25 83792315; fax: +86 25 83792316. E-mail address: [email protected] (J. Cao).
    [Show full text]
  • 1 Introduction 2 the Van Der Pol Oscillator
    Van der Pol Oscillator Celestial Mechanics Wesley Cao · 1 Introduction The van der Pol oscillator is a non-conservative oscillator with non-linear damping. Energy is dissipated at high amplitudes and generated at low amplitudes. As a result, there exists oscillations around a state at which energy generation and dissipation balance. The state towards which the oscillations converge is known as a limit cycle, which shall be formalized later in this paper. Balthazar van der Pol was a pioneer in the field of radio and telecommunications. While he was working at Phillips, van der Pol discovered these stable oscillations. Van der Pol himself came across the system as he was building electronic circuit models of the human heart. Due to the unique nature of the van der Pol oscillator, it has become the cornerstone for studying systems with limit cycle oscillations. In fact, the van der Pol equation has become a staple model for oscillatory processes in not only physics, but also biology, sociology and even economics. For instance, it has been used to model the electrical potential across the cell membranes of neurons in the gastric mill circuit of lobsters [5, 9]. Additionally, Fitzhugh and Nagumo used the model to describe spike generation in giant squid axons [4, 7]. The equation has also been extended to the Burridge–Knopoff model which characterizes earthquake faults with viscous friction [3]. Thus, it stands to reason that we should develop a deep understanding of the van der Pol oscillator due to its widespread applications. 2 The Van der Pol Oscillator The van der Pol oscillator is described by the equation x¨ ǫ(1 x2)x ˙ + x = 0 − − and equivalently the autonomous system, x3 x˙ = y F (x) := y ǫ x − − µ 3 − ¶ y˙ = x − It differs from the systems we have studied in that it is non-conservative.
    [Show full text]
  • Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected]
    Occam's Razor Volume 6 (2016) Article 7 2016 Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/orwwu Part of the Medicine and Health Sciences Commons Recommended Citation Klassen, Misha (2016) "Deterministic Chaos: Applications in Cardiac Electrophysiology," Occam's Razor: Vol. 6 , Article 7. Available at: https://cedar.wwu.edu/orwwu/vol6/iss1/7 This Research Paper is brought to you for free and open access by the Western Student Publications at Western CEDAR. It has been accepted for inclusion in Occam's Razor by an authorized editor of Western CEDAR. For more information, please contact [email protected]. Klassen: Deterministic Chaos DETERMINISTIC CHAOS APPLICATIONS IN CARDIAC ELECTROPHYSIOLOGY BY MISHA KLASSEN I. INTRODUCTION Our universe is a complex system. It is made up A system must have at least three dimensions, of many moving parts as a dynamic, multifaceted and nonlinear characteristics, in order to generate machine that works in perfect harmony to create deterministic chaos. When nonlinearity is introduced the natural world that allows us life. e modeling as a term in a deterministic model, chaos becomes of dynamical systems is the key to understanding possible. ese nonlinear dynamical systems are seen the complex workings of our universe. One such in many aspects of nature and human physiology. complexity is chaos: a condition exhibited by an is paper will discuss how the distribution of irregular or aperiodic nonlinear deterministic system. blood throughout the human body, including factors Data that is generated by a chaotic mechanism will a ecting the heart and blood vessels, demonstrate appear scattered and random, yet can be dened by chaotic behavior.
    [Show full text]
  • Dynamics of a 2D Lattice of Van Der Pol Oscillators with Nonlinear Repulsive Coupling
    Dynamics of a 2D lattice of van der Pol oscillators with nonlinear repulsive coupling I.A. Shepelev ,∗ S.S. Muni ,y T.E. Vadivasova∗ September 22, 2020 Abstract We describe spatiotemporal patterns in a network of identical van der Pol oscillators coupled in a two-dimensional geometry. In this study, we show that the system under study demonstrates a plethora of different spatiotemporal structures including chimera states when the coupling pa- rameters are varied. Spiral wave chimeras are formed in the network when the coupling strength is rather large and the coupling range is short enough. Another type of chimeras is a target wave chimera. It is shown that solitary states play a crucial role in forming an incoherence cluster of this chimera state. They can also spread within the coherence cluster. Furthermore, when the coupling range increases, the target wave chimera evolves to the regime of solitary states which are randomly distributed in space. Growing the coupling strength leads to the attraction of solitary states to a certain spatial region, while the synchronous regime is set in the other part of the system. This spatiotemporal pattern represents a soli- tary state chimera, which is firstly found in the system of continuous-time oscillators. We offer the explanation of these phenomena and describe the evolution of the regimes in detail. Introduction The study of the self-organization phenomena in complex multicomponent sys- tems in the form of oscillatory networks and ensembles is one of the most relevant arXiv:2009.09584v1 [nlin.AO] 21 Sep 2020 directions in the nonlinear dynamics and related disciplines [18, 28, 30, 4, 8].
    [Show full text]
  • Invariant Manifolds of the Bonhoeffer-Van Der Pol Oscillator
    Invariant manifolds of the Bonhoeffer-van der Pol oscillator R. Ben´ıtez1, V. J. Bol´os2 1 Dpto. Matem´aticas,Centro Universitario de Plasencia, Universidad de Extremadura. Avda. Virgen del Puerto 2. 10600, Plasencia (C´aceres),Spain. e-mail: [email protected] 2 Dpto. Matem´aticas,Facultad de Ciencias, Universidad de Extremadura. Avda. de Elvas s/n. 06071, Badajoz, Spain. e-mail: [email protected] May 2007 Abstract The stable and unstable manifolds of a saddle fixed point (SFP) of the Bonhoeffer- van der Pol oscillator are numerically studied. A correspondence between the existence of homoclinic tangencies (which are related to the creation or destruction of Smale horseshoes) and the chaos observed in the bifurcation diagram is described. It is observed that in the non-chaotic zones of the bifurcation diagram, there may or may not be Smale horseshoes, but there are no homoclinic tangencies. 1 Introduction The Bonhoeffer van der Pol oscillator (BvP) is the non-autonomous planar system 9 x3 x0 = x − − y + I(t) = 3 ; (1) y0 = c(x + a − by) ; being a, b, c real parameters, and I (t) an external forcement. We shall consider only a periodic forcement I(t) = A cos (2πt) and the specific values for the parameters a = 0:7, b = 0:8, c = 0:1. These values were considered in [1] because of their physical and biological importance (see [2]). In previous works [3], the existence of \horseshoe chaos" in BvP was studied analytically by means of the Melnikov method applied to an equivalent system, the Duffing-van der Pol oscillator (DvP).
    [Show full text]
  • 1 Van Der Pol Oscillator
    1 Van der Pol oscillator The second order non-linear autonomous differential equation d2x dx + µ x2 − 1 + x =0, µ> 0 (1) dt2 dt is called the van der Pol equation. It describes many physical systems collec- tively called van der Pol oscillators. The equation models a non-conservative system in which energy is added to and subtracted from the system, result- ing in a periodic motion called a limit cycle. The parameter mu is a positive scalar indicating the nonlinearity and the strength of the damping. The dx sign of the damping term in Eq. (1), x2 − 1 changes, depending upon dt whether |x| is larger or smaller than unity. 1.1 Numerical integration Let’s write Eq. (1) as a first order system of differential equations, dx = y, dt (2) dy 2 dx = −µ (x − 1) − x, dt dt The results of numerical integration of Eqs. (2) are presented in Figs. 1–4. Numerical integration of Eq. (2) shows that every initial condition (except x = 0,x ˙ = 0) approaches a unique periodic motion. The nature of this limit cycle is dependent on the value of µ. For small values of µ the motion is nearly sinusoidal, whereas for large values of µ it is a relaxation oscillation, meaning that it tends to resemble a series of step functions, jumping between positive and negative values twice per cycle. Numerical integration shows that the limit cycle is a closed curve en- closing the origin in the x-y phase plane. From the fact that Eqs. (2) are invariant under the transformation x → −x, y → −y, we may conclude that the curve representing the limit cycle is point symmetric about the origin.
    [Show full text]
  • Arxiv:1910.05233V1 [Physics.Comp-Ph] 11 Oct 2019 Email Address: [email protected] (Artem Chashchin)
    Predicting dynamical system evolution with residual neural networks Artem Chashchina,b,∗, Mikhail Botcheva, Ivan Oseledetsb,c, George Ovchinnikovb aKeldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia bSkolkovo Institute of Science and Technology, Moscow, Russia cMarchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia Abstract Forecasting time series and time-dependent data is a common problem in many applications. One typical example is solving ordinary differential equation (ODE) systemsx _ = F (x). Oftentimes the right hand side function F (x) is not known explicitly and the ODE system is described by solution samples taken at some time points. Hence, ODE solvers cannot be used. In this paper, a data- driven approach to learning the evolution of dynamical systems is considered. We show how by training neural networks with ResNet-like architecture on the solution samples, models can be developed to predict the ODE system solution further in time. By evaluating the proposed approaches on three test ODE systems, we demonstrate that the neural network models are able to reproduce the main dynamics of the systems qualitatively well. Moreover, the predicted solution remains stable for much longer times than for other currently known models. Keywords: dynamical systems, residual networks, deep learning ∗Corresponding author arXiv:1910.05233v1 [physics.comp-ph] 11 Oct 2019 Email address: [email protected] (Artem Chashchin) Preprint submitted to Journal of Computational Physics October 14, 2019 1. Introduction Neural network techniques are becoming an important tool for analyzing time-dependent data sets and multivariate time series. One typical problem is to reconstruct solution of an ODE (ordinary differential equation) system x_ = F (x) by learning the right hand side function F (x) with a suitable neural network.
    [Show full text]
  • 8 Example 1: the Van Der Pol Oscillator (Strogatz Chapter 7)
    Dynamical systems 2018 [email protected] 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations) using mainly constructed examples. In this and the next lectures we consider two examples with real-world applications. 8.1 Self-sustained oscillations Self-sustained oscillations are frequent in nature and in technology, some examples being stick-slip oscillations, unwanted mechanical vi- brations, and oscillators in biology. Usually a system with self-sustained oscillations has a feedback mechanism such that small-amplitude os- cillations grow in size. The small oscillations are frequently modeled using an oscillator with negative damping 2 x¨ − γx_ + !0x = 0 : The system for x and y =x _ has an unstable spiral at the origin, blow- ing up small-scale oscillations. As oscillations grow, non-linear terms may form a stable limit cycle and the system shows self-sustained oscillations. One frequently used model is the van der Pol oscillator: x¨ + µ(x2 − 1) x_ + x = 0 (1) | {z } f(x) Nonlinear damping coefficient f(x) damps large oscillations (friction when jxj > 1) and amplifies small oscillations (forcing when jxj < 1) ) We expect self-sustained oscillations to be possible. Indeed the corresponding dynamical system x_ = y y_ = −x − µ(x2 − 1)y 0 p shows ap stable limit cycle if µ > 0 (after a rescaling x = x = µ and y = y0= µ, the system has a supercritical Hopf bifurcation): 1 Dynamical systems 2018 [email protected] Period time and shape of the cycle depends on µ.
    [Show full text]