Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cooperativity of Imprinted Genes Inactivated by Acquired Chromosome 20Q Deletions
Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz, … , Anne C. Ferguson-Smith, Anthony R. Green J Clin Invest. 2013;123(5):2169-2182. https://doi.org/10.1172/JCI66113. Research Article Oncology Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of “simple” cancer-associated chromosome deletions. Find the latest version: https://jci.me/66113/pdf Research article Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions Athar Aziz,1,2 E. Joanna Baxter,1,2,3 Carol Edwards,4 Clara Yujing Cheong,5 Mitsuteru Ito,4 Anthony Bench,3 Rebecca Kelley,1,2 Yvonne Silber,1,2 Philip A. -
Discovery of Endoplasmic Reticulum Calcium Stabilizers to Rescue ER-Stressed Podocytes in Nephrotic Syndrome
Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome Sun-Ji Parka, Yeawon Kima, Shyh-Ming Yangb, Mark J. Hendersonb, Wei Yangc, Maria Lindahld, Fumihiko Uranoe, and Ying Maggie Chena,1 aDivision of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; bNational Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850; cDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; dInstitute of Biotechnology, University of Helsinki, Helsinki, Finland 00014; and eDivision of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 28, 2019 (received for review August 16, 2018) Emerging evidence has established primary nephrotic syndrome activating transcription factor 6 (ATF6), which act as proximal (NS), including focal segmental glomerulosclerosis (FSGS), as a sensors of ER stress. ER stress activates these sensors by inducing primary podocytopathy. Despite the underlying importance of phosphorylation and homodimerization of IRE1α and PERK/ podocyte endoplasmic reticulum (ER) stress in the pathogenesis of eukaryotic initiation factor 2α (eIF2α), as well as relocalization of NS, no treatment currently targets the podocyte ER. In our mono- ATF6 to the Golgi, where it is cleaved by S1P/S2P proteases from genic podocyte ER stress-induced NS/FSGS mouse model, the 90 kDa to the active 50-kDa ATF6 (8), leading to activation of podocyte type 2 ryanodine receptor (RyR2)/calcium release channel their respective downstream transcription factors, spliced XBP1 on the ER was phosphorylated, resulting in ER calcium leak and (XBP1s), ATF4, and p50ATF6 (8–10). -
CCN3 and Calcium Signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2
Cell Communication and Signaling BioMed Central Review Open Access CCN3 and calcium signaling Alain Lombet1, Nathalie Planque2, Anne-Marie Bleau2, Chang Long Li2 and Bernard Perbal*2 Address: 1CNRS UMR 8078, Hôpital Marie Lannelongue, 133, Avenue de la Résistance 92350 Le PLESSIS-ROBINSON, France and 2Laboratoire d'Oncologie Virale et Moléculaire, Tour 54, Case 7048, Université Paris 7-D.Diderot, 2 Place Jussieu 75005 PARIS, France Email: Alain Lombet - [email protected]; Nathalie Planque - [email protected]; Anne-Marie Bleau - [email protected]; Chang Long Li - [email protected]; Bernard Perbal* - [email protected] * Corresponding author Published: 15 August 2003 Received: 26 June 2003 Accepted: 15 August 2003 Cell Communication and Signaling 2003, 1:1 This article is available from: http://www.biosignaling.com/content/1/1/1 © 2003 Lombet et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. Abstract The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. -
1 Inventory of Supplemental Information Presented in Relation To
Inventory of Supplemental Information presented in relation to each of the main figures in the manuscript 1. Figure S1. Related to Figure 1. 2. Figure S2. Related to Figure 2. 3. Figure S3. Related to Figure 3. 4. Figure S4. Related to Figure 4. 5. Figure S5. Related to Figure 5. 6. Figure S6. Related to Figure 6. 7. Figure S7. Related to Figure 7. 8. Table S1. Related to Figures 1 and S1. 9. Table S2. Related to Figures 3, 4, 6 and 7. 10. Table S3. Related to Figure 3. Supplemental Experimental Procedures 1. Patients and samples 2. Cell culture 3. Long term culture-initiating cells (LTC-IC) assay 4. Differentiation of CD34+ cord blood cells 5. Bi-phasic erythroid differentiation assay 6. Clonal assay 7. Mutation and sequencing analysis 8. Bisulphite sequencing and quantitative pyrosequencing 9. Human SNP genotyping 10. Strand-specific cDNA synthesis and PCR 11. Chromatin Immuno-precipitation (ChIP) 12. Immunoprecipitation and western blot 13. Colony genotyping 14. shRNA generation and viral infection 15. Retrovirus generation and transduction 16. Study approval 17. Statistical Methods 18. Primers list Supplementary References (19) 1 Additional SGK2 families 2 3 4 ♂ ♀ ♂ ♀ ♂ ♀ C/G C/C C/C C/G C/C C/G ♀ ♀ ♂ ♀ C/G C/G C/G C/G T T C T G C T A G A T T C T C C T A G A T T C T C C T A G A T T C T C C T A G A T-Cells T-Cells T-Cells T-Cells Additional GDAP1L1 familiy 2 ♂ ♀ G/G A/A ♀ G/A A C A C G G T G Erythroblasts Figure S1 - . -
Proteomics of Serum Extracellular Vesicles Identifies a Novel COPD Biomarker, Fibulin-3 from Elastic Fibres
ORIGINAL ARTICLE COPD Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres Taro Koba 1, Yoshito Takeda1, Ryohei Narumi2, Takashi Shiromizu2, Yosui Nojima 3, Mari Ito3, Muneyoshi Kuroyama1, Yu Futami1, Takayuki Takimoto4, Takanori Matsuki1, Ryuya Edahiro1, Satoshi Nojima5, Yoshitomo Hayama1, Kiyoharu Fukushima1, Haruhiko Hirata1, Shohei Koyama1, Kota Iwahori1, Izumi Nagatomo1, Mayumi Suzuki1, Yuya Shirai1, Teruaki Murakami1, Kaori Nakanishi 1, Takeshi Nakatani1, Yasuhiko Suga1, Kotaro Miyake1, Takayuki Shiroyama1, Hiroshi Kida 1, Takako Sasaki6, Koji Ueda7, Kenji Mizuguchi3, Jun Adachi2, Takeshi Tomonaga2 and Atsushi Kumanogoh1 ABSTRACT There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl- peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD. -
Calpain Inhibitor and Ibudilast Rescue Β Cell Functions in a Cellular Model of Wolfram Syndrome
Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome Lien D. Nguyena,b,1, Tom T. Fischera,c,1, Damien Abreud,e, Alfredo Arroyoa, Fumihiko Uranod,f, and Barbara E. Ehrlicha,b,2 aDepartment of Pharmacology, Yale University, New Haven, CT 06520; bInterdepartmental Neuroscience Program, Yale University, New Haven, CT 06520; cInstitute of Pharmacology, University of Heidelberg, 69117 Heidelberg, Germany; dDepartment of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110; eMedical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110; and fDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved June 1, 2020 (received for review April 18, 2020) Wolfram syndrome is a rare multisystem disease characterized by diseases, such as Alzheimer’s disease (22), cancer progression childhood-onset diabetes mellitus and progressive neurodegener- (23), and diabetes mellitus (24, 25). ation. Most cases are attributed to pathogenic variants in a single Here we show that KO of WFS1 in rat insulinoma (INS1) cells gene, Wolfram syndrome 1 (WFS1). There currently is no disease- led to elevated resting cytosolic calcium, reduced stimulus- modifying treatment for Wolfram syndrome, as the molecular con- evoked calcium signaling, and, consequently, hypersusceptibility sequences of the loss of WFS1 remain elusive. Because diabetes to hyperglycemia and decreased glucose-stimulated insulin se- mellitus is the first diagnosed symptom of Wolfram syndrome, we cretion. Overexpression of WFS1 or WFS1’s interacting partner aimed to further examine the functions of WFS1 in pancreatic β neuronal calcium sensor-1 (NCS1) reversed the deficits observed cells in the context of hyperglycemia. -
Genomic Analyses Implicate Noncoding De Novo Variants in Congenital Heart Disease
Lawrence Berkeley National Laboratory Recent Work Title Genomic analyses implicate noncoding de novo variants in congenital heart disease. Permalink https://escholarship.org/uc/item/1ps986vj Journal Nature genetics, 52(8) ISSN 1061-4036 Authors Richter, Felix Morton, Sarah U Kim, Seong Won et al. Publication Date 2020-08-01 DOI 10.1038/s41588-020-0652-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Genet Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 December 29. Published in final edited form as: Nat Genet. 2020 August ; 52(8): 769–777. doi:10.1038/s41588-020-0652-z. Genomic analyses implicate noncoding de novo variants in congenital heart disease Felix Richter1,31, Sarah U. Morton2,3,31, Seong Won Kim4,31, Alexander Kitaygorodsky5,31, Lauren K. Wasson4,31, Kathleen M. Chen6,31, Jian Zhou6,7,8, Hongjian Qi5, Nihir Patel9, Steven R. DePalma4, Michael Parfenov4, Jason Homsy4,10, Joshua M. Gorham4, Kathryn B. Manheimer11, Matthew Velinder12, Andrew Farrell12, Gabor Marth12, Eric E. Schadt9,11,13, Jonathan R. Kaltman14, Jane W. Newburger15, Alessandro Giardini16, Elizabeth Goldmuntz17,18, Martina Brueckner19, Richard Kim20, George A. Porter Jr.21, Daniel Bernstein22, Wendy K. Chung23, Deepak Srivastava24,32, Martin Tristani-Firouzi25,32, Olga G. Troyanskaya6,7,26,32, Diane E. Dickel27,32, Yufeng Shen5,32, Jonathan G. Seidman4,32, Christine E. Seidman4,28,32, Bruce D. Gelb9,29,30,32,* 1Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 2Department of Pediatrics, Harvard Medical School, Boston, MA, USA. -
Ryanodine Receptor Regulation During Exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E
COMMENTARY COMMENTARY Intensity matters: Ryanodine receptor regulation during exercise Tobias Kohla, Gunnar Weningera, Ran Zalkb, Philip Eatonc, and Stephan E. Lehnarta,d,1 aHeart Research Center Göttingen, Clinic of Cardiology & Pulmonology, University Medical Center & Georg-August-University, 37099 Göttingen, Germany; bThe National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; cKing’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London SE17EH, United Kingdom; and dGerman Centre for Cardiovascular Research site Götttingen, 37099 Göttingen, Germany Skeletal muscles provide fascinating examples which were correlated with depressed muscle how humans have evolved and exercise. While function (3). humans developed superior cognition, Previous studies determined that calpain metabolome evolution studies indicate an activation cleaves RyR1 channels into stably accelerated parallel decline in muscle ener- associated ∼375- and ∼150-kDa fragments getic capacity and strength (1). New forms of sustaining subconductance channel open gat- locomotion including exceptional endurance ing in vitro (6). Recombinant, N-terminally were adapted ∼2 million years ago (2). Now- truncated RyR1 channels reconstituted in lipid adays, we generally assume healthy aging and bilayers exhibited CICR-like functions (7). disease prevention depend on regular Notably, 24 h after HIIT exercise recreation- exercise. Contrasting with evolutionary ally active humans showed significant RyR1 adaptation, high-intensity interval training fragmentation (re)producing a ∼375-kDa (HIIT) represents an ultrashort form of ex- fragment in muscle biopsies similar to cal- ercise and a promising intervention for dis- pain-treated RyR1 (3, 6). Calpain is known ease prevention. However, the molecular to cleave RyR1 protomers at residues 1383– mechanisms are incompletely understood. -
Meat Tenderness and the Calpain Proteolytic System in Longissimus Muscle of Young Bulls and Steers1
Meat Tenderness and the Calpain Proteolytic System in Longissimus Muscle of Young Bulls and Steers1 J. B. Morgan**2, T. L. Wheeler?, M. Koohmaraie', J. W. Savell", and J. D. CrousetJ +Roman L. Hruska U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933-0166 and *Department of Animal Science, Texas A&M University, College Station 77843-2471 ABSTRACT: The objectives of this study were to than meat from steers; however, sensory panelists examine the effects of castration on the calpain were unable (P > .05) to detect differences in proteinase system ( p-calpain, m-calpain, and cal- tenderness or other sensory traits between bulls and pastatin) activities and meat tenderness. Six each, steers. Activities of p- and m-calpain were not affected MARC 111 bulls and steers were slaughtered at (P > .05) by castration; however, calpastatin was approximately 12 mo of age. Longissimus muscle higher (P c .05) in muscles from the bull carcasses. samples were obtained for determining myofibril fragmentation index, Warner-Bratzler shear force, and Lower ( P c .05) myofibril fragmentation index values sensory panel evaluation at 1, 7, and 14 d postmortem, indicate that less proteolysis occurred in muscle from and p- and m-calpain and calpastatin activities at 24 h bulls than in muscle from steers during the first 7 d postmortem. Bulls produced leaner carcasses with postmortem. Greater calpastatin 24-h activity may be lower (Pc .05) quality grades than did steers. Meat associated with the increased shear force of meat from from bulls had higher ( P c .05) shear force values bulls. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Calmodulin-Androgen Receptor (AR) Interaction: Calcium- Dependent, Calpain-Mediated Breakdown of AR in Lncapprostatecancer Cells
Research Article Calmodulin-Androgen Receptor (AR) Interaction: Calcium- Dependent, Calpain-Mediated Breakdown of AR in LNCaPProstateCancer Cells Ronald P. Pelley,1 Kannagi Chinnakannu,1 Shalini Murthy,1 Faith M. Strickland,2 Mani Menon,1 Q. Ping Dou,3 Evelyn R. Barrack,1 and G. Prem-Veer Reddy1,3 1Vattikuti Urology Institute and 2Department of Dermatology, Henry Ford Hospital; 3Karmanos Cancer Institute and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan Abstract Introduction Chemotherapy of prostate cancer targets androgen receptor Adenocarcinoma of the prostate is the most frequently (AR) by androgen ablation or antiandrogens, but unfortu- diagnosed cancer and second leading cause of cancer deaths in nately, it is not curative. Our attack on prostate cancer American men (1). Although androgen ablation is the most envisions the proteolytic elimination of AR, which requires a common therapy for disseminated prostate cancer, it is palliative fuller understanding of AR turnover. We showed previously in nature and most patients eventually succumb to hormone- that calmodulin (CaM) binds to AR with important con- refractory disease resistant to chemotherapy. Whether normal or sequences for AR stability and function. To examine the mutated, androgen receptor (AR) is required for growth in both involvement of Ca2+/CaM in the proteolytic breakdown of AR, androgen-sensitive and androgen-insensitive prostate cancer (2). we analyzed LNCaP cell extracts that bind to a CaM affinity Therefore, it is of paramount importance to dissect the various column for the presence of low molecular weight forms of AR ways in which AR is regulated to not simply inactivate but to (intact AR size, f114 kDa). -
Mutation of Junctophilin Type 2 Associated with Hypertrophic Cardiomyopathy
J Hum Genet (2007) 52:543–548 DOI 10.1007/s10038-007-0149-y ORIGINAL ARTICLE Mutation of junctophilin type 2 associated with hypertrophic cardiomyopathy Yoshihisa Matsushita Æ Toru Furukawa Æ Hiroshi Kasanuki Æ Makoto Nishibatake Æ Yachiyo Kurihara Æ Atsushi Ikeda Æ Naoyuki Kamatani Æ Hiroshi Takeshima Æ Rumiko Matsuoka Received: 1 March 2007 / Accepted: 31 March 2007 / Published online: 3 May 2007 Ó The Japan Society of Human Genetics and Springer 2007 Abstract Junctophilin subtypes, designated as JPH1~4, showed statistical significance (4/296 HCM patients and 0/ are protein components of junctional complexes and play 472 control individuals, P=0.022). This result was still essential roles in cellular Ca2+ signaling in excitable cells. significant after Bonferroni’s correction for multiple com- Knockout mice lacking the cardiac-type Jph2 die of parisons (P=0.044). To the best of our knowledge, this is embryonic cardiac arrest, and the mutant cardiac myocytes the first report on JPH2 mutation associated with HCM. exhibit impaired formation of peripheral couplings and arrhythmic Ca2+ signaling caused by functional uncoupling Keywords Junctophilin Á Hypertrophic cardiomyopathy Á between dihydropyridine and ryanodine receptor channels. Ca2+ signaling Á Ryanodine receptor Á Junctional membrane Based on these observations, we hypothesized that muta- complexes Á Ca2+-induced Ca2+ release tions of JPH2 could cause human genetic cardiac diseases. Among 195 Japanese patients (148 index cases and 47 affected family members) with hypertrophic cardiomyop- Introduction athy (HCM), two heterozygous nonsynonymous nucleotide transitions, G505S and R436C, were newly found in JPH2. Functional communications between cell-surface and When Fisher’s exact test was used to compare index cases intracellular channels are essential features of excitable with HCM to unrelated Japanese healthy controls in the cells (Berridge 2002).