Geologic Map of Miller Mountain and Columbus Quadrangles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arthropod Pattern Theory and Cambrian Trilobites
Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids. -
An Inventory of Trilobites from National Park Service Areas
Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna. -
Arthropod Pattern Theory and Cambrian Trilobites
Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarle* £. anb Jfflarp "^Xaux flKHalcott 3Resiearcf) Jf tmb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland SEP Iff 1951 (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarie* B. anb Jfflarp "^Taux OTalcott &egearcf) Jf unb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 BALTIMORE, MD., U. 8. A. CONTENTS PART I. STRATIGRAPHY Page Introduction i The problem I Acknowledgments 2 Summary of previous work 3 Method of work 7 Description of localities and sections 9 Terminology 9 Bow Lake 11 Hector Creek 13 Slate Mountains 14 Mount Niblock 15 Mount Whyte—Plain of Six Glaciers 17 Ross Lake 20 Mount Bosworth 21 Mount Victoria 22 Cathedral Mountain 23 Popes Peak 24 Eiffel Peak 25 Mount Temple 26 Pinnacle Mountain 28 Mount Schaffer 29 Mount Odaray 31 Park Mountain 33 Mount Field : Kicking Horse Aline 35 Mount Field : Burgess Quarry 37 Mount Stephen 39 General description 39 Monarch Creek IS Monarch Mine 46 North Gully and Fossil Gully 47 Cambrian formations : Lower Cambrian S3 St. Piran sandstone 53 Copper boundary of formation ?3 Peyto limestone member 55 Cambrian formations : Middle Cambrian 56 Mount Whyte formation 56 Type section 56 Lithology and thickness 5& Mount Whyte-Cathedral contact 62 Lake Agnes shale lentil 62 Yoho shale lentil "3 iii iv SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. -
Upper Lower Cambrian (Provisional Cambrian Series 2) Trilobites from Northwestern Gansu Province, China
Estonian Journal of Earth Sciences, 2014, 63, 3, 123–143 doi: 10.3176/earth.2014.12 Upper lower Cambrian (provisional Cambrian Series 2) trilobites from northwestern Gansu Province, China a b c c Jan Bergström , Zhou Zhiqiang , Per Ahlberg and Niklas Axheimer a Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 5007, SE-104 05 Stockholm, Sweden b Xi’an Institute of Geology and Mineral Resources, 438 East You Yi Road, Xi’an 710054, Peoples Republic of China; [email protected] c Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden; [email protected], [email protected] Received 7 March 2014, accepted 24 June 2014 Abstract. Upper lower Cambrian (provisional Cambrian Series 2) trilobites are described from three sections through the Shuangyingshan Formation in the Beishan area, northwestern Gansu Province, China. The trilobite fauna is dominated by eodiscoid and ‘corynexochid’ trilobites, together representing at least ten genera: Serrodiscus, Tannudiscus, Calodiscus, Pagetides, Kootenia, Edelsteinaspis, Ptarmiganoides?, Politinella, Dinesus and Subeia. Eleven species are described, of which seven are identified with previously described taxa and four described under open nomenclature. The composition of the fauna suggests biogeographic affinity with Siberian rather than Gondwanan trilobite faunas, and the Cambrian Series 2 faunas described herein and from elsewhere in northwestern China seem to be indicative of the marginal areas of the Siberian palaeocontinent. This suggests that the Middle Tianshan–Beishan Terrane may have been located fairly close to Siberia during middle–late Cambrian Epoch 2. Key words: Trilobita, taxonomy, palaeobiogeography, lower Cambrian, Cambrian Series 2, Beishan, Gansu Province, China. -
Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
THE BURGESS SHALE: A CAMBRIAN MIRROR FOR MODERN EVOLUTIONARY BIOLOGY by Keynyn Alexandra Ripley Brysse A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Keynyn Alexandra Ripley Brysse (2008) Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44745-1 Our file Notre reference ISBN: 978-0-494-44745-1 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
The Cambrian Explosion: How Do We Use the Evidence?
Teaching Biology The Cambrian Explosion: How Do We Use the Evidence? JEFFREY S. LEVINTON The Cambrian explosion is an excellent example of a grand idea that has been tempered by the steady collection of data to test hypotheses. Historically, the idea of an “explosion” developed from an apparent lack of bilaterian animal fossils before a certain point in the fossil record, in contrast with a great diversity of life that seemed to appear in the Cambrian period. DNA molecular clock estimates contradict this story, however, with most dates for the divergence of major phyla predating the Cambrian by 100 million to 400 million years. The contradiction might be rectified by corrections to the clock or by discoveries of Precambrian bilaterian fossils. Although many candidates exist, no single environmental or biological explanation for the Cambrian explosion satisfactorily explains the apparent sudden appearance of much of the diversity of bilaterian animal life. Scientists’ understanding of this phenomenon has been greatly amplified in recent years by better geological dating and environmental characterization, new fossil discoveries, and by a great expansion of our knowledge of developmental mechanisms and their evolutionary meaning. Keywords: Cambrian explosion, macroevolution, fossil record, molecular evolution he term “Cambrian explosion” refers to a hypoth- in Wales and England revealed a series of animal forms, with Tesized time when bilaterally symmetrical (bilaterian) the newest rocks containing forms that strongly resembled animal groups of diverse forms diverged from a common living animal species, and the oldest including a series of ancestor during the early part of the Cambrian period, a strata that apparently lacked recognizable animal fossils. -
Exploring Abnormal Cambrian-Aged Trilobites in the Smithsonian Collection
Exploring abnormal Cambrian-aged trilobites in the Smithsonian collection Russell D.C. Bicknell1 and Stephen Pates2 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia 2 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Boston, United States of America ABSTRACT Biomineralised trilobite exoskeletons provide a 250 million year record of abnormalities in one of the most diverse arthropod groups in history. One type of abnormality— repaired injuries—have allowed palaeobiologists to document records of Paleozoic predation, accidental damage, and complications in moulting experienced by the group. Although Cambrian trilobite injuries are fairly well documented, the illustration of new injured specimens will produce a more complete understanding of Cambrian prey items. To align with this perspective, nine new abnormal specimens displaying healed injuries from the Smithsonian National Museum of Natural History collection are documented. The injury pattern conforms to the suggestion of lateralised prey defence or predator preference, but it is highlighted that the root cause for such patterns is obscured by the lumping of data across different palaeoecological and environmental conditions. Further studies of Cambrian trilobites with injuries represent a key direction for uncovering evidence for the Cambrian escalation event. Subjects Evolutionary Studies, Paleontology Keywords Trilobites, Abnormalities, Cambrian Explosion, Durophagy, Escalation, Healed injuries Submitted 21 October 2019 Accepted 23 December 2019 INTRODUCTION Published 3 February 2020 Corresponding author The Cambrian Explosion—a rapid and stunning increase in animal diversity and Russell D.C. Bicknell, disparity during the earliest Paleozoic, over 500 million years ago—likely resulted from a [email protected], combination of biological, ecological, and environmental factors (Smith & Harper, 2013; [email protected] Zhang et al., 2014; Bicknell & Paterson, 2018). -
Quantifying Intra-And Interspecific Variability in Trilobite Moulting
Palaeontologia Electronica palaeo-electronica.org Quantifying intra- and interspecific variability in trilobite moulting behaviour across the Palaeozoic Harriet B. Drage ABSTRACT Moulting of a protective exoskeleton is a defining characteristic of Euarthropoda, and its evolution can be explored through analysing moults preserved in the fossil record. Our most complete record comes from the Trilobita, which were uniquely flexi- ble in moulting compared to other arthropod groups. This study presents the first broad-scale quantitative analysis of trilobite moulting. Trends in moulting variability with taxonomy and through the Palaeozoic are explored by looking at the occurrences of six moulting characteristics: opening of the facial and ventral sutures; and disarticulation of the cephalon, cranidium, thorax, and pygidium. Significant differences in moulting across taxonomic and temporal groups were identified using chi-squared analyses, and biases with sampling and diversity identified through correlation analyses. Occur- rences of facial and ventral suture opening, and cephalic disarticulation, significantly varied between orders and Epochs. These likely result from the prevalence of ventral suture moulting in Redlichiida and cephalic disarticulation in Phacopida, and their rele- vant diversity patterns. The data show high levels of intraspecific variability in moulting; ~40% of species showed multiple moulting characteristics. Redlichiida and the early Cambrian are the most intraspecifically variable, with greater variability likely an adap- tation to the initial radiation and establishment of trilobites into new niches. The lon- gest-lived group, Proetida, showed the lowest levels of intraspecific variability, which may suggest greater specialism later in the Palaeozoic. Ultimately, datasets such as this advocate the need to study behaviours in the fossil record on a broad-scale, because they help us build a comprehensive picture of extinct groups as living animals. -
How and Why Did the Arthropod Shed Its Skin? Moulting in Living and Fossil Arthropods Author(S): Harriet B
Title: Patterns in palaeontology: How and why did the arthropod shed its skin? Moulting in living and fossil arthropods Author(s): Harriet B. Drage* 1 Volume: 6 Article: 7 Page(s): 110. Published Date: 01/07/2016 PermaLink: http://www.palaeontologyonline.com/articles/2016/arthropodmoulting/ IMPORTANT Your use of the Palaeontology [online] archive indicates your acceptance of Palaeontology [online]'s Terms and Conditions of Use, available at h ttp://www.palaeontologyonline.com/siteinformation/termsandconditions/. COPYRIGHT Palaeontology [online] (www.palaeontologyonline.com) publishes all work, unless otherwise stated, under the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. This license lets others distribute, remix, tweak, and build upon the published work, even commercially, as long as they credit Palaeontology[online] for the original creation. This is the most accommodating of licenses offered by Creative Commons and is recommended for maximum dissemination of published material. Further details are available at http://www.palaeontologyonline.com/siteinformation/copyright/. CITATION OF ARTICLE Please cite the following published work as: Drage, Harriet B. 2016. Patterns in palaeontology: How and why did the arthropod shed its skin? Moulting in living and fossil arthropods, Palaeontology Online, Volume 6, Article 7, 110. Patterns in palaeontology: How and why did the arthropod shed its skin? Moulting in living and fossil arthropods by H arriet B. Drage* 1 Introduction: Arthropods are one of the most successful groups of animals, in the present day and the fossil record. There are more than 1 million described arthropod species, and it has been estimated that there are at least 5 million more undescribed alive today (Fig. -
A Pictorial Guide to the Orders of Trilobites
A PICTORIAL GUIDE TO THE ORDERS OF TRILOBITES by Samuel M. Gon III, Ph.D. ORDER ORDER PROETIDA ASAPHIDA Superfamily Superfamily Superfamily Superfamily Superfamily Superfamily Superfamily Superfamily Superfamily Aulacopleuroidea Bathyuroidea Proetoidea Anomocaroidea Asaphoidea Trinucleioidea Dikelocephaloidea Cyclopygoidea Remopleuridoidea Aulacopleuridae Bathyuridae Proetidae Anomocarellidae Asaphidae Trinucleidae Dikelocephalidae Cyclopygidae Remopleurididae Aulacopleura Goniotelus Cyphoproetus Glyphaspis Ogygiocaris Cryptolithus Dikelocephalus Cyclopyge Remopleurides ORDER ORDER ORDER ORDER HARPETIDA CORYNEXOCHIDA LICHIDA ODONTOPLEURIDA Suborder Suborder Suborder Suborder Superfamily Superfamily Superfamily Harpetina Corynexochina Illaenina Leiostegiina Lichoidea Dameselloidea Odontopleuroidea Harpetidae Dorypygidae Illaenidae Kaolishaniidae Lichidae Damesellidae Odontopleuridae Harpes Olenoides Bumastus Mansuyia Arctinurus Drepanura Kettneraspis ORDER ORDER PHACOPIDA PTYCHOPARIIDA Suborder Suborder Suborder Suborder Suborder Calymenina Cheirurina Phacopina Ptychopariina Olenina Calymenidae Cheiruridae Phacopidae Acastidae Tricrepicephalidae Ptychopariidae Ellipsocephalidae Olenidae Calymene Ceraurus Phacops Kayserops Tricrepicephalus Modocia Ellipsocephalus Olenus ORDER ORDER AGNOSTIDA REDLICHIIDA Suborder Suborder Suborder Suborder Agnostina Eodiscina Olenellina Redlichiina Agnostidae Condylopygidae Eodiscidae Olenellidae Fallotaspididae Redlichiidae Paradoxididae Xystriduridae Emuellidae Agnostus Pleuroctenium Pagetia Paedeumias -
Burgess Shale−Type Microfossils from the Middle Cambrian Kaili Formation, Guizhou Province, China
Burgess Shale−type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China THOMAS H.P. HARVEY, JAVIER ORTEGA−HERNÁNDEZ, JIH−PAI LIN, ZHAO YUANLONG, and NICHOLAS J. BUTTERFIELD Harvey, T.H.P., Ortega−Hernández, J., Lin, J.−P., Zhao, Y., and Butterfield, N.J. 2012. Burgess Shale−type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China. Acta Palaeontologica Polonica 57 (2): 423–436. Diverse carbonaceous microfossils, including exceptionally preserved remains of non−biomineralizing metazoans, are re− ported from a basal middle Cambrian interval of the Kaili Formation (Guizhou Province, China). The application of a gentle acid maceration technique complements previous palynological studies by revealing a larger size−class of acritarchs, a richer assemblage of filamentous microfossils, and a variety of previously unrecovered forms. Metazoan fos− sils include Wiwaxia sclerites and elements derived from biomineralizing taxa, including chancelloriids, brachiopods and hyolithids, in common with previously studied assemblages from the early and middle Cambrian of Canada. In addition, the Kaili Formation has yielded pterobranch remains and an assemblage of cuticle fragments representing “soft−bodied” worms, including a priapulid−like scalidophoran. Our results demonstrate the wide distribution and palaeobiological im− portance of microscopic “Burgess Shale−type” fossils, and provide insights into the limitations and potential of this largely untapped preservational mode. Key words: Kaili biota, Priapulida,