Leibniz rules for enveloping algebras Stjepan Meljanac, Zoran Skodaˇ Theoretical Physics Division, Institute Rudjer Boˇskovi´c,Bijeniˇckacesta 54, P.O.Box 180, HR-10002 Zagreb, Croatia Abstract Given a finite-dimensional Lie algebra, and a representation by derivations on the completed symmetric algebra of its dual, a number of interesting twisted con- structions appear: certain twisted Weyl algebras, deformed Leibniz rules, quan- tized “star” product. We first illuminate a number of interrelations between these constructions and then proceed to study a special case in certain precise sense cor- responding to the symmetric ordering. It has been known earlier that this case is related to the computations with Hausdorff series, for example an expression for the star product is in such terms. For the deformed Leibniz rule, hence a coproduct, we present here a new nonsymmetric expression, which is then expanded into a sum of expressions labelled by a class of planar trees, and for a given tree evaluated by Feynman-like rules. These expressions are graded by a bidegree and we show recursion formulas for the component of fixed bidegree, and compare the recursion to the recursions for Hausdorff series, including a nontrivial comparison of initial conditions. This way we show a direct correspondence between the Hausdorff series and the expression for twisted coproduct. Key words: universal enveloping algebra, coexponential map, deformed coproduct, star product, Hausdorff series, Weyl algebra, planar tree Contents 1 Introduction 2 2 The data defining the setup 3 3 Deformed derivatives 10 4 Symmetric ordering 17 5 Tree calculus for symmetric ordering 19 Email address:
[email protected],
[email protected] (Stjepan Meljanac, Zoran Skoda).ˇ Preprint submitted to Elsevier Science 6 Some facts on Hausdorff series 27 7 Fourier notation and using exponentials 29 8 The results leading to the proof of the main theorem 31 9 Special cases and other results 32 References 34 1 Introduction 1.1.