Are Cook and Karp Ever the Same?

Total Page:16

File Type:pdf, Size:1020Kb

Are Cook and Karp Ever the Same? Are Cook and Karp Ever the Same? Richard Beigel∗ Lance Fortnowy Temple University NEC Laboratories America Abstract relativized world where there is a sparse set that collapses. This is in fact the first relativized world in which any set has We consider the question whether there exists a set A been shown to collapse. such that every set polynomial-time Turing equivalent to A In Section 2 we give some background and formal defi- is also many-one equivalent to A. We show that if E = nitions of our problem. Section 4 shows that no sparse set NE then no sparse set has this property. We give the first collapses unless E = NE. Section 5 describes the rela- 6 relativized world where there exists a set with this property, tivized world giving a sparse collapsing set. and in this world the set A is sparse. 2 Preliminaries p 1 Introduction We say a set A m B (“A many-one reduces to B”) if there exists a polynomial-time≤ computable function f such that x A f(x) B and a set A p B (“A is many- The seminal papers of Cook [Coo71] and Karp [Kar72] m one equivalent2 , to B”)2 if A p B and≡B p A. Similarly define NP-completeness differently based on the kind of m m a set A p B (“A Turing≤ reduces to B”)≤ if there exists a reductions used. Cook allows Turing reductions, where one T polynomial-time≤ oracle Turing machine M such that A = can decide an instance of one problem by asking an arbi- L(M B), and a set A p B (“A is Turing equivalent to B”) trary collection of instances of a second problem. Karp al- T if A p B and B p≡A. lows only the more restrictive many-one reductions, which ≤T ≤T require mapping an instance of one problem into a single in- Hypothesis 2.1 (Collapse) There exists an A not in P such stance of the second. Computational complexity theory has p p that for all B, if A B then A m B. often looked at the relationship between these two notions ≡T ≡ of reducibility. We call a set A fulfilling Hypothesis 2.1 a collapsing set. In this paper, we will focus on a fundamental question The condition that A is not in P is not strictly necessary— along these lines: Does there exist a set A such that all sets for any A = in P, is Turing equivalent to A, but is 6 ; ; ; Turing equivalent to A are also many-one equivalent to A? not many-one equivalent to A. Nevertheless we will carry We say that such a set collapses or has the collapsing prop- along this condition for clarity. erty. While there has been some work on this problem, most Collapsing is invariant under Turing equivalence: If A is notably by Selman [Sel79] and by Ambos-Spies, Bentzien, collapsing and B is Turing equivalent to A then B is also Fejer, Merkle and Stephan [ABF+00], three decades after collapsing. the work of Cook and Karp this question remains open. The join of two sets A B is the set 0x x A ⊕ f j 2 g [ Selman [Sel79] shows that no tally set collapses. Un- 1x x B . The set A B is many-one reducible to f j 2 g ⊕ der the assumption E = NE we show that no sparse set any other set C such that A many-one reduces to C and collapses either. B many-one reduces to C. A similar statement holds for Some assumption appears to be necessary: We give a Turing reductions. A set A is sparse if for some polynomial p, there are at ∗Address: Dept. of Computer and Information Sciences, 1805 N. Broad most p(n) elements of A of length n, for all n. A set A is P- St. Floor 3, Philadelphia, PA 19122-6094, USA. Phone: (215)204- 8450, fax: (215)204-5082, email: [email protected], printable if there is a function h computable in polynomial- http://www.cis.temple.edu/ beigel. Supported in part by time such that h(1n) outputs a list of all strings in A having ∼ the National Science Foundation under grants CCR-9996021 and CCR- length n. Every P-printable set is sparse. 0049019. Work done while at the NEC Research Institute. The complexity class E = DTIME(2O(n)), and NE = yAddress: 4 Independence Way, Princeton, NJ O(n) 08540, USA. Email: [email protected]. NTIME(2 ). http://www.neci.nj.nec.com/homepages/fortnow. We use Σ to represent our alphabet 0; 1 . f g 3 Previous Work The set D is Turing equivalent to B so if B is collapsing then D is collapsing. But D is a tally set so D is not col- Selman [Sel79] looked at whether collapsing sets could lapsing by Theorem 3.1. be tally sets, i.e., subsets of 1∗. We also use the following lemma from Hartmanis, Im- merman and Sewelson [HIS85]: Theorem 3.1 (Selman) No tally set is collapsing. Lemma 4.3 (HIS) If E = NE then all sparse sets in NP Since we make use of Theorem 3.1 in this paper, we give a are P-printable. proof here for completeness. Proof: Let A be a sparse set in NP. Consider the sets B Proof of Theorem 3.1: Suppose A 1∗ is a collapsing and C defined as set. Consider the following set B (known⊆ as the left-cut of A B = n; w There exist x1 < x2 < < xw ): fh i j ··· of length n in A x 1 B = x Σ∗ x A()A(1)A(11) A(1j |− ) g f 2 j ≤ ··· g C = n; w; i; j There exist x1 < x2 < < xw fh i j ··· where denotes lexicographic ordering. of length n in A with the jth bit of xi is 1 g One≤ can easily Turing reduce B to A. A also Turing where the numbers n, w, i and j are written in binary. The reduces to B by using binary search to find A()A(1) . sets B and E are in NE = E. In particular, in polynomial The sets B and B are both Turing equivalent to ···A so in n time we can find the maximum w such that n; w is they are Turing equivalent to each other. By assumption in B. This tells us how many strings of length n areh iniA. this means there is a many-one reduction f reducing B to Note that there is only one possible choice for x ; : : : ; x . B. 1 w We now determine whether n; w; i; j in C for all of the Note that if x B and y x then y B. Since appropriate i and j to reconstructh the stringsi x ; : : : ; x in exactly one of x and2 f(x) could≤ be in B, it2 must be the 1 w A. lexicographically least one. This lets us test membership in B in polynomial-time. Since A is equivalent to B we also Proof of Theorem 4.1: Suppose E = NE and let A be have A in P. a sparse collapsing set. A is Turing equivalent to A so by Ambos-Spies, Bentzien, Fejer, Merkle and assumption there is a function f reducing A to A. Consider Stephan [ABF+00] proved many other results about the set collapsing sets including the following: B = 1n; x ( y)[ y = n and f(y) = x : fh i j 9 j j g Theorem 3.2 (ABFMS) If A is a collapsing set then The set B is in NP. 1. A is computable, and We also claim that B is sparse. The number of strings in m B of length n is bounded by m n f(Σ ) , so it suffices 2. A is not hard for EXP. to show that f(Σn) is polynomiallyP ≤ j bounded.j We have f(Σn) f(jA Σnj) + f(A Σn) . Each of those terms is j j ≤ j \ j j \ j 4 Separations polynomially bounded because A is sparse and f(A) A. By Lemma 4.3, B is P-printable. Consider C B⊆ de- fined as ⊆ In this section we show that under a hard-to-disprove as- sumption, no sparse set can be collapsing. Section 5 indi- C = 1n; x 1n; x B and x A : cates that some assumption appears to be needed. fh i j h i 2 2 g The set C is Turing equivalent to A: C is reducible to A Theorem 4.1 If E = NE then no sparse set is collapsing. because B is in P; for the other direction, we have y y 2 A 1j j; f(y) = C. () h i 2 To prove Theorem 4.1 we first need the following Since A is collapsing C is also collapsing. But C is lemma: a subset of a P-printable set so C does not collapse by Lemma 4.2. Lemma 4.2 No subset of a P-printable set is collapsing. Proof: Let B be a subset of a P-printable set C. Let 5 Collapse n h(1 ) = yn;1; : : : ; yn;k list the elements of C of length n. Definef the set D as g In this section we present the first relativized world where there exists a collapsing set, i.e., where Hypothe- n;i D = 1h i yn;i B : sis 2.1 holds. f j 2 g Theorem 5.1 There exists an oracle B and a sparse set We say u and v are connected if the value of A(u) is A PB such that for every set C forced by setting v A, given the other conditions we have 62 already currently set.2 pB pB C A C A: The first set of conditions we use will require that yi ≡T () ≡m 2 A yi + 1 A for each i.
Recommended publications
  • Computational Complexity Theory Introduction to Computational
    31/03/2012 Computational complexity theory Introduction to computational complexity theory Complexity (computability) theory theory deals with two aspects: Algorithm’s complexity. Problem’s complexity. References S. Cook, « The complexity of Theorem Proving Procedures », 1971. Garey and Johnson, « Computers and Intractability, A guide to the theory of NP-completeness », 1979. J. Carlier et Ph. Chrétienne « Problèmes d’ordonnancements : algorithmes et complexité », 1988. 1 31/03/2012 Basic Notions • Some problem is a “question” characterized by parameters and needs an answer. – Parameters description; – Properties that a solutions must satisfy; – An instance is obtained when the parameters are fixed to some values. • An algorithm: a set of instructions describing how some task can be achieved or a problem can be solved. • A program : the computational implementation of an algorithm. Algorithm’s complexity (I) • There may exists several algorithms for the same problem • Raised questions: – Which one to choose ? – How they are compared ? – How measuring the efficiency ? – What are the most appropriate measures, running time, memory space ? 2 31/03/2012 Algorithm’s complexity (II) • Running time depends on: – The data of the problem, – Quality of program..., – Computer type, – Algorithm’s efficiency, – etc. • Proceed by analyzing the algorithm: – Search for some n characterizing the data. – Compute the running time in terms of n. – Evaluating the number of elementary operations, (elementary operation = simple instruction of a programming language). Algorithm’s evaluation (I) • Any algorithm is composed of two main stages: initialization and computing one • The complexity parameter is the size data n (binary coding). Definition: Let be n>0 andT(n) the running time of an algorithm expressed in terms of the size data n, T(n) is of O(f(n)) iff n0 and some constant c such that: n n0, we have T(n) c f(n).
    [Show full text]
  • Submitted Thesis
    Saarland University Faculty of Mathematics and Computer Science Bachelor’s Thesis Synthetic One-One, Many-One, and Truth-Table Reducibility in Coq Author Advisor Felix Jahn Yannick Forster Reviewers Prof. Dr. Gert Smolka Prof. Dr. Markus Bläser Submitted: September 15th, 2020 ii Eidesstattliche Erklärung Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver- fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Statement in Lieu of an Oath I hereby confirm that I have written this thesis on my own and that I have not used any other media or materials than the ones referred to in this thesis. Einverständniserklärung Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird. Declaration of Consent I agree to make both versions of my thesis (with a passing grade) accessible to the public by having them added to the library of the Computer Science Department. Saarbrücken, September 15th, 2020 Abstract Reducibility is an essential concept for undecidability proofs in computability the- ory. The idea behind reductions was conceived by Turing, who introduced the later so-called Turing reduction based on oracle machines. In 1944, Post furthermore in- troduced with one-one, many-one, and truth-table reductions in comparison to Tur- ing reductions more specific reducibility notions. Post then also started to analyze the structure of the different reducibility notions and their computability degrees. Most undecidable problems were reducible from the halting problem, since this was exactly the method to show them undecidable. However, Post was able to con- struct also semidecidable but undecidable sets that do not one-one, many-one, or truth-table reduce from the halting problem.
    [Show full text]
  • NP-Completeness: Reductions Tue, Nov 21, 2017
    CMSC 451 Dave Mount CMSC 451: Lecture 19 NP-Completeness: Reductions Tue, Nov 21, 2017 Reading: Chapt. 8 in KT and Chapt. 8 in DPV. Some of the reductions discussed here are not in either text. Recap: We have introduced a number of concepts on the way to defining NP-completeness: Decision Problems/Language recognition: are problems for which the answer is either yes or no. These can also be thought of as language recognition problems, assuming that the input has been encoded as a string. For example: HC = fG j G has a Hamiltonian cycleg MST = f(G; c) j G has a MST of cost at most cg: P: is the class of all decision problems which can be solved in polynomial time. While MST 2 P, we do not know whether HC 2 P (but we suspect not). Certificate: is a piece of evidence that allows us to verify in polynomial time that a string is in a given language. For example, the language HC above, a certificate could be a sequence of vertices along the cycle. (If the string is not in the language, the certificate can be anything.) NP: is defined to be the class of all languages that can be verified in polynomial time. (Formally, it stands for Nondeterministic Polynomial time.) Clearly, P ⊆ NP. It is widely believed that P 6= NP. To define NP-completeness, we need to introduce the concept of a reduction. Reductions: The class of NP-complete problems consists of a set of decision problems (languages) (a subset of the class NP) that no one knows how to solve efficiently, but if there were a polynomial time solution for even a single NP-complete problem, then every problem in NP would be solvable in polynomial time.
    [Show full text]
  • Module 34: Reductions and NP-Complete Proofs
    Module 34: Reductions and NP-Complete Proofs This module 34 focuses on reductions and proof of NP-Complete problems. The module illustrates the ways of reducing one problem to another. Then, the module illustrates the outlines of proof of NP- Complete problems with some examples. The objectives of this module are To understand the concept of Reductions among problems To Understand proof of NP-Complete problems To overview proof of some Important NP-Complete problems. Computational Complexity There are two types of complexity theories. One is related to algorithms, known as algorithmic complexity theory and another related to complexity of problems called computational complexity theory [2,3]. Algorithmic complexity theory [3,4] aims to analyze the algorithms in terms of the size of the problem. In modules 3 and 4, we had discussed about these methods. The size is the length of the input. It can be recollected from module 3 that the size of a number n is defined to be the number of binary bits needed to write n. For example, Example: b(5) = b(1012) = 3. In other words, the complexity of the algorithm is stated in terms of the size of the algorithm. Asymptotic Analysis [1,2] refers to the study of an algorithm as the input size reaches a limit and analyzing the behaviour of the algorithms. The asymptotic analysis is also science of approximation where the behaviour of the algorithm is expressed in terms of notations such as big-oh, Big-Omega and Big- Theta. Computational complexity theory is different. Computational complexity aims to determine complexity of the problems itself.
    [Show full text]
  • Mapping Reducibility and Rice's Theorem
    6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 9 Nancy Lynch Today • Mapping reducibility and Rice’s Theorem • We’ve seen several undecidability proofs. • Today we’ll extract some of the key ideas of those proofs and present them as general, abstract definitions and theorems. • Two main ideas: – A formal definition of reducibility from one language to another. Captures many of the reduction arguments we have seen. – Rice’s Theorem, a general theorem about undecidability of properties of Turing machine behavior (or program behavior). Today • Mapping reducibility and Rice’s Theorem • Topics: – Computable functions. – Mapping reducibility, ≤m – Applications of ≤m to show undecidability and non- recognizability of languages. – Rice’s Theorem – Applications of Rice’s Theorem • Reading: – Sipser Section 5.3, Problems 5.28-5.30. Computable Functions Computable Functions • These are needed to define mapping reducibility, ≤m. • Definition: A function f: Σ1* →Σ2* is computable if there is a Turing machine (or program) such that, for every w in Σ1*, M on input w halts with just f(w) on its tape. • To be definite, use basic TM model, except replace qacc and qrej states with one qhalt state. • So far in this course, we’ve focused on accept/reject decisions, which let TMs decide language membership. • That’s the same as computing functions from Σ* to { accept, reject }. • Now generalize to compute functions that produce strings. Total vs. partial computability • We require f to be total = defined for every string. • Could also define partial computable (= partial recursive) functions, which are defined on some subset of Σ1*.
    [Show full text]
  • The Satisfiability Problem
    The Satisfiability Problem Cook’s Theorem: An NP-Complete Problem Restricted SAT: CSAT, 3SAT 1 Boolean Expressions ◆Boolean, or propositional-logic expressions are built from variables and constants using the operators AND, OR, and NOT. ◗ Constants are true and false, represented by 1 and 0, respectively. ◗ We’ll use concatenation (juxtaposition) for AND, + for OR, - for NOT, unlike the text. 2 Example: Boolean expression ◆(x+y)(-x + -y) is true only when variables x and y have opposite truth values. ◆Note: parentheses can be used at will, and are needed to modify the precedence order NOT (highest), AND, OR. 3 The Satisfiability Problem (SAT ) ◆Study of boolean functions generally is concerned with the set of truth assignments (assignments of 0 or 1 to each of the variables) that make the function true. ◆NP-completeness needs only a simpler Question (SAT): does there exist a truth assignment making the function true? 4 Example: SAT ◆ (x+y)(-x + -y) is satisfiable. ◆ There are, in fact, two satisfying truth assignments: 1. x=0; y=1. 2. x=1; y=0. ◆ x(-x) is not satisfiable. 5 SAT as a Language/Problem ◆An instance of SAT is a boolean function. ◆Must be coded in a finite alphabet. ◆Use special symbols (, ), +, - as themselves. ◆Represent the i-th variable by symbol x followed by integer i in binary. 6 SAT is in NP ◆There is a multitape NTM that can decide if a Boolean formula of length n is satisfiable. ◆The NTM takes O(n2) time along any path. ◆Use nondeterminism to guess a truth assignment on a second tape.
    [Show full text]
  • Homework 4 Solutions Uploaded 4:00Pm on Dec 6, 2017 Due: Monday Dec 4, 2017
    CS3510 Design & Analysis of Algorithms Section A Homework 4 Solutions Uploaded 4:00pm on Dec 6, 2017 Due: Monday Dec 4, 2017 This homework has a total of 3 problems on 4 pages. Solutions should be submitted to GradeScope before 3:00pm on Monday Dec 4. The problem set is marked out of 20, you can earn up to 21 = 1 + 8 + 7 + 5 points. If you choose not to submit a typed write-up, please write neat and legibly. Collaboration is allowed/encouraged on problems, however each student must independently com- plete their own write-up, and list all collaborators. No credit will be given to solutions obtained verbatim from the Internet or other sources. Modifications since version 0 1. 1c: (changed in version 2) rewored to showing NP-hardness. 2. 2b: (changed in version 1) added a hint. 3. 3b: (changed in version 1) added comment about the two loops' u variables being different due to scoping. 0. [1 point, only if all parts are completed] (a) Submit your homework to Gradescope. (b) Student id is the same as on T-square: it's the one with alphabet + digits, NOT the 9 digit number from student card. (c) Pages for each question are separated correctly. (d) Words on the scan are clearly readable. 1. (8 points) NP-Completeness Recall that the SAT problem, or the Boolean Satisfiability problem, is defined as follows: • Input: A CNF formula F having m clauses in n variables x1; x2; : : : ; xn. There is no restriction on the number of variables in each clause.
    [Show full text]
  • 11 Reductions We Mentioned Above the Idea of Solving Problems By
    11 Reductions We mentioned above the idea of solving problems by translating them into known soluble problems, or showing that a new problem is insoluble by translating a known insoluble into it. Reductions are the formal tool to implement this idea. It turns out that there are several subtly different variations – we will mainly use one form of reduction, which lets us make a fine analysis of uncomputability. First, we introduce a technical term for a Register Machine whose purpose is to translate one problem into another. Definition 12 A Turing transducer is an RM that takes an instance d of a problem (D, Q) in R0 and halts with an instance d0 = f(d) of (D0,Q0) in R0. / Thus f must be a computable function D D0 that translates the problem, and the → transducer is the machine that computes f. Now we define: Definition 13 A mapping reduction or many–one reduction from Q to Q0 is a Turing transducer f as above such that d Q iff f(d) Q0. Iff there is an m-reduction from Q ∈ ∈ to Q0, we write Q Q0 (mnemonic: Q is less difficult than Q0). / ≤m The standard term for these is ‘many–one reductions’, because the function f can be many–one – it doesn’t have to be injective. Our textbook Sipser doesn’t like that term, and calls them ‘mapping reductions’. To hedge our bets, and for brevity, we’ll call them m-reductions. Note that the reduction is just a transducer (i.e. translates the problem) that translates correctly (so that the answer to the translated problem is the same as the answer to the original).
    [Show full text]
  • Decidable. (Recall It’S Not “Regular”.)
    15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6 September 15, 2016 Turing & the Uncomputable Comparing the cardinality of sets 퐴 ≤ 퐵 if there is an injection (one-to-one map) from 퐴 to 퐵 퐴 ≥ 퐵 if there is a surjection (onto map) from 퐴 to 퐵 퐴 = 퐵 if there is a bijection from 퐴 to 퐵 퐴 > |퐵| if there is no surjection from 퐵 to 퐴 (or equivalently, there is no injection from 퐴 to 퐵) Countable and uncountable sets countable countably infinite uncountable One slide guide to countability questions You are given a set 퐴 : is it countable or uncountable 퐴 ≤ |ℕ| or 퐴 > |ℕ| 퐴 ≤ |ℕ| : • Show directly surjection from ℕ to 퐴 • Show that 퐴 ≤ |퐵| where 퐵 ∈ {ℤ, ℤ x ℤ, ℚ, Σ∗, ℚ[x], …} 퐴 > |ℕ| : • Show directly using a diagonalization argument • Show that 퐴 ≥ | 0,1 ∞| Proving sets countable using computation For example, f(n) = ‘the nth prime’. You could write a program (Turing machine) to compute f. So this is a well-defined rule. Or: f(n) = the nth rational in our listing of ℚ. (List ℤ2 via the spiral, omit the terms p/0, omit rationals seen before…) You could write a program to compute this f. Poll Let 퐴 be the set of all languages over Σ = 1 ∗ Select the correct ones: - A is finite - A is infinite - A is countable - A is uncountable Another thing to remember from last week Encoding different objects with strings Fix some alphabet Σ . We use the ⋅ notation to denote the encoding of an object as a string in Σ∗ Examples: is the encoding a TM 푀 is the encoding a DFA 퐷 is the encoding of a pair of TMs 푀1, 푀2 is the encoding a pair 푀, 푥, where 푀 is a TM, and 푥 ∈ Σ∗ is an input to 푀 Uncountable to uncomputable The real number 1/7 is “computable”.
    [Show full text]
  • Thy.1 Reducibility Cmp:Thy:Red: We Now Know That There Is at Least One Set, K0, That Is Computably Enumerable Explanation Sec but Not Computable
    thy.1 Reducibility cmp:thy:red: We now know that there is at least one set, K0, that is computably enumerable explanation sec but not computable. It should be clear that there are others. The method of reducibility provides a powerful method of showing that other sets have these properties, without constantly having to return to first principles. Generally speaking, a \reduction" of a set A to a set B is a method of transforming answers to whether or not elements are in B into answers as to whether or not elements are in A. We will focus on a notion called \many- one reducibility," but there are many other notions of reducibility available, with varying properties. Notions of reducibility are also central to the study of computational complexity, where efficiency issues have to be considered as well. For example, a set is said to be \NP-complete" if it is in NP and every NP problem can be reduced to it, using a notion of reduction that is similar to the one described below, only with the added requirement that the reduction can be computed in polynomial time. We have already used this notion implicitly. Define the set K by K = fx : 'x(x) #g; i.e., K = fx : x 2 Wxg. Our proof that the halting problem in unsolvable, ??, shows most directly that K is not computable. Recall that K0 is the set K0 = fhe; xi : 'e(x) #g: i.e. K0 = fhx; ei : x 2 Weg. It is easy to extend any proof of the uncomputabil- ity of K to the uncomputability of K0: if K0 were computable, we could decide whether or not an element x is in K simply by asking whether or not the pair hx; xi is in K0.
    [Show full text]
  • Computability on the Integers
    Computability on the integers Laurent Bienvenu ( LIAFA, CNRS & Université de Paris 7 ) EJCIM 2011 Amiens, France 30 mars 2011 1. Basic objects of computability The formalization and study of the notion of computable function is what computability theory is about. As opposed to complexity theory, we do not care about efficiency, just about feasibility. Computable. functions What does it means for a function f : N ! N to be computable? 1. Basic objects of computability 3/79 As opposed to complexity theory, we do not care about efficiency, just about feasibility. Computable. functions What does it means for a function f : N ! N to be computable? The formalization and study of the notion of computable function is what computability theory is about. 1. Basic objects of computability 3/79 Computable. functions What does it means for a function f : N ! N to be computable? The formalization and study of the notion of computable function is what computability theory is about. As opposed to complexity theory, we do not care about efficiency, just about feasibility. 1. Basic objects of computability 3/79 But for us, it is now obvious that computable = realizable by a program / algorithm. Surprisingly, the first acceptable formalization (Turing machines) is still one of the best (if not the best) we know today. The. intuition At the time these questions were first considered (1930’s), computers did not exist (at least in the modern sense). 1. Basic objects of computability 4/79 Surprisingly, the first acceptable formalization (Turing machines) is still one of the best (if not the best) we know today.
    [Show full text]
  • CS21 Decidability and Tractability Outline Definition of Reduction
    Outline • many-one reductions CS21 • undecidable problems Decidability and Tractability – computation histories – surprising contrasts between Lecture 13 decidable/undecidable • Rice’s Theorem February 3, 2021 February 3, 2021 CS21 Lecture 13 1 February 3, 2021 CS21 Lecture 13 2 Definition of reduction Definition of reduction • Can you reduce co-HALT to HALT? • More refined notion of reduction: – “many-one” reduction (commonly) • We know that HALT is RE – “mapping” reduction (book) • Does this show that co-HALT is RE? A f B yes yes – recall, we showed co-HALT is not RE reduction from f language A to no no • our current notion of reduction cannot language B distinguish complements February 3, 2021 CS21 Lecture 13 3 February 3, 2021 CS21 Lecture 13 4 Definition of reduction Definition of reduction A f B yes yes • Notation: “A many-one reduces to B” is written f no no A ≤m B – “yes maps to yes and no maps to no” means: • function f should be computable w ∈ A maps to f(w) ∈ B & w ∉ A maps to f(w) ∉ B Definition: f : Σ*→ Σ* is computable if there exists a TM Mf such that on every w ∈ Σ* • B is at least as “hard” as A Mf halts on w with f(w) written on its tape. – more accurate: B at least as “expressive” as A February 3, 2021 CS21 Lecture 13 5 February 3, 2021 CS21 Lecture 13 6 1 Using reductions Using reductions Definition: A ≤m B if there is a computable • Main use: given language NEW, prove it is function f such that for all w undecidable by showing OLD ≤m NEW, w ∈ A ⇔ f(w) ∈ B where OLD known to be undecidable – proof by contradiction Theorem: if A ≤m B and B is decidable then A is decidable – if NEW decidable, then OLD decidable Proof: – OLD undecidable.
    [Show full text]