An Endophilin–Dynamin Complex Promotes Budding of Clathrin-Coated Vesicles During Synaptic Vesicle Recycling

Total Page:16

File Type:pdf, Size:1020Kb

An Endophilin–Dynamin Complex Promotes Budding of Clathrin-Coated Vesicles During Synaptic Vesicle Recycling Research Article 133 An endophilin–dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling Anna Sundborger1, Cynthia Soderblom1, Olga Vorontsova1, Emma Evergren1,*, Jenny E. Hinshaw2,‡ and Oleg Shupliakov1,‡ 1Department of Neuroscience, DBRM, Karolinska Institutet, 17177 Stockholm, Sweden 2Laboratory of Cell Biochemistry and Biology, NIDDK, NIH, Bethesda, MD 20892, USA *Present address: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK ‡Authors for correspondence ([email protected]; [email protected]) Accepted 20 September 2010 Journal of Cell Science 124, 133-143 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.072686 Summary Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles. Key words: Synapse, Endophilin, Dynamin, Endocytosis Introduction in lamprey giant synapses, one of the effects of acute perturbation Recycling of synaptic vesicles after neurotransmitter release is of the endophilin Src-homology 3 (SH3) domain interaction was crucial for a sustained transmission. This membrane-retrieval an increase in the number of constricted CCPs (Gad et al., 2000). Journal of Cell Science process occurs mainly through clathrin-mediated endocytosis These results indicate that endophilin interactions are not only (Granseth et al., 2007; Jung and Haucke, 2007; Rodal and Littleton, involved in uncoating but also play a role in a stage dealing with 2008). At the final step of this process, clathrin-coated vesicles bud membrane-bound constricted CCPs before the fission step and from the presynaptic membrane and shed their clathrin coat. The might thus involve dynamin. accessory protein endophilin binds to two endocytic molecules There are three dynamin isoforms in neurons. Dynamin-1 is the implicated in the scission and uncoating events in synapses – the neuron-specific isoform required during high levels of neuronal GTPase dynamin and the polyphosphoinositide phosphatase activity (Ferguson et al., 2007; Lou et al., 2008). All dynamin synaptojanin (Liu et al., 2009; Ferguson et al., 2007; Heymann and proteins contain a pleckstrin-homology (PH) domain, which allows Hinshaw, 2009; Mettlen et al., 2009). Dynamin plays the key role the protein to interact with membrane phospholipids, and a proline- in synaptic vesicle budding, as a complete depletion of all dynamin rich domain (PRD), which enables them to bind to SH3 domains isoforms blocks fission of clathrin coated pits (CCPs) (Ferguson et of accessory proteins (Ferguson et al., 2007). The SH3 domain of al., 2007). The interaction of endophilin with synaptojanin serves endophilin 1 has been shown to bind to the PRD of dynamin 1 at mainly to facilitate uncoating of vesicles after fission (Cremona et two sites in vitro (Anggono and Robinson, 2007; Heymann and al., 1999; Gad et al., 2000; Ringstad et al., 1999; Ringstad et al., Hinshaw, 2009). Endophilin also contains an N-terminal BAR 2001; Schuske et al., 2003; Song and Zinsmaier, 2003; Verstreken domain with membrane curvature-generating and curvature-sensing et al., 2003), although recent studies in budding yeast suggest a properties (Gallop et al., 2006; Masuda et al., 2006). Together with possible involvement of synaptojanin in the actual fission reaction. dynamin, endophilin is present on tubules formed by liposomes This property of endophilin implies that it functions as a molecular after addition of brain cytosol (Farsad et al., 2001; Ringstad et al., switch linking fission and uncoating during recycling of synaptic 1999). Taken together, these studies suggest that endophilin might vesicles. The molecular mechanisms underlying this ‘switch’ are regulate fission, although it still remains unclear how the complex unknown, and in particular the role of the endophilin–dynamin of endophilin and dynamin, which is not modified by GTP (Farsad interaction remains to be clarified. et al., 2001), might aid this process. Loss of endophilin in both fly and nematode resulted in a Here, we utilized the lamprey reticulospinal synapse to elucidate slowdown of the endocytic process in neuromuscular junctions the role of endophilin–dynamin interactions in the regulation of the and in an increase in the number of free and membrane-attached fission mechanism during recycling of synaptic vesicles. Using clathrin-coated intermediates (Dickman et al., 2005; Schuske et al., immuno-electron microscopy, we localized endophilin to the sites 2003; Verstreken et al., 2002; Verstreken et al., 2003). Additionally, of synaptic vesicle recycling in relation to dynamin and studied the 134 Journal of Cell Science 124 (1) effects of acute perturbations of endophilin SH3 domain interactions synaptojanin-1-knockout mice. These data led to the conclusion on endocytosis in lamprey synapses. To model the effects observed that endophilin serves as a recruiter of the polyinositolphosphatase in living synapses in vitro, we used recombinant proteins and lipid synaptojanin to CCPs to promote the uncoating reaction (Cremona templates. Our experiments indicate that endophilin accumulates et al., 1999). In the present study, we sought to investigate further at a restricted part of the neck of the CCP. We propose that the origin of another, upstream, effect of PP19 microinjection – the endophilin provides a template for dynamin assembly and forms a accumulation of constricted CCPs – which possibly involves complex with dynamin at the neck. This complex increases dynamin dynamin (Gad et al., 2000). recruitment to the neck and structurally promotes dynamin- We first tested whether PP19 blocks SH3 domain interactions of mediated fission and thus aids sustaining a high rate of synaptic other endocytic proteins interacting with dynamin in lamprey and vesicle recycling during neurotransmitter release. found that PP19 competes efficiently with dynamin for binding to the GST–SH3 domain of lamprey endophilin but does not affect Results the interactions between dynamin and the lamprey amphiphysin Endophilin localizes to the rim of the clathrin coat of CCPs SH3 domain or the whole cassette of five SH3 domains of lamprey and colocalizes with dynamin at a restricted part of the intersectin (supplementary material Fig. S2B). Additionally, coupled neck to beads, PP19 selectively affinity-purifies the lamprey endophilin To study the relative distribution of endophilin and dynamin at orthologue but not amphiphysin or intersectin from lamprey brain sites of synaptic vesicle recycling in intact stimulated synapses, we extracts (supplementary material Fig. S2C). used immunogold labeling (Evergren et al., 2004). Both endophilin We then microinjected PP19 into lamprey giant axons to test and dynamin accumulate in the synaptic vesicle pool at rest whether perturbations of the endophilin SH3-domain interactions (supplementary material Fig. S1A) (Evergren et al., 2007). During affect the localization of dynamin at the necks of constricted CCPs. stimulation, an accumulation of both proteins is observed at CCPs Ultrastructural effects induced by microinjection of PP19 in giant in the periactive zone (Fig. 1A–C,E,F; supplementary material axons (n4) are similar to those described earlier (Gad et al., Fig. S1B,C) (see also Evergren et al., 2007). This is in contrast to 2000). Synaptic vesicle recycling is perturbed and an accumulation synapsin, which has also been shown to reside in the synaptic of constricted CCPs is observed in synaptic periactive zones (Fig. vesicle cluster at rest but does not associate with CCPs in the 2A,G and supplementary material Fig. S2D). The fission of clathrin- periactive zone of stimulated synapses (Evergren et al., 2004). coated vesicles, however, is not completely blocked as free clathrin- Interestingly, endophilin is localized at the edge of the clathrin coat coated vesicles are observed in the axoplasm (Fig. 2A2 and of shallow coated pits (Fig. 1B1,2) and at later stages is concentrated supplementary material Fig. S2D). at the necks of constricted coated pits (Fig. 1B3). Localization of To determine whether the localization of dynamin to constricted endophilin at the rim of the coat was also confirmed by post- CCPs is affected by PP19, we labeled endocytic intermediates with embedding immunogold labeling (supplementary material Fig. antibodies against dynamin. While labeling of the upper part of the S1B,C). Dynamin immunoreactivity is also detected at early coat is unaffected, labeling at the lower areas of CCPs is decreased endocytic stages. Contrary to endophilin, dynamin is found significantly (Fig. 2C vs 2D,H–I). The localization of endophilin
Recommended publications
  • Identification of Synaptic Proteins and Their Isoform Mrnas In
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 12487-12491, December 1994 Cell Biology Identification of synaptic proteins and their isoform mRNAs in compartments of pancreatic endocrine cells (exocytosis/secretion/insulin/diabetes) GUNILLA JACOBSSON*, ANDREW J. BEANt, RICHARD H. SCHELLERt, LISA JUNTTI-BERGGRENt, JUDE T. DEENEYt, PER-OLOF BERGGRENt AND BJORN MEISTER*§ *Department of Neuroscience and tRolf Luft's Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, S-171 77 Stockholm, Sweden; and tDepartment of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Beckman Center, Stanford University, Stanford, CA 94305 Communicated by Tomas Hokfelt, August 30, 1994 ABSTRACT Several proteins that are of importance for clostridial neurotoxins, including tetanus toxin and botuli- membrane trafficking in the nerve terminal have recently been num neurotoxin B, whereas botulinum neurotoxins D and F characterized. We have used Western blot and immunohis- are capable of cleaving both forms of VAMP (10-12). tochemistry to show that synaptotagmin, synaptobrevin/VAMP VAMP-1 and VAMP-2 are encoded by two distinct genes (13) (vesicle-associated membrane protein), SNAP-25 (synaptosom- and are differentially expressed in the nervous system (14). al-associated protein of 25 kDa), and syntaxin proteins are Cellubrevin is a homologue of VAMP, which is present in a present in cells of the islets of Langerhans in the endocrine wide variety of tissues and may be a membrane trafficking pancreas. Synaptotagmin-like immunoreactivity (-LI) was lo- protein of a constitutively recycling pathway (15). calized to granules within the cytoplasm of a few endocrine cells In contrast to synaptotagmin and VAMP, the synaptoso- located in the periphery of the islets, identified as somatostatin- mal-associated protein of 25 kDa (SNAP-25) is located at the containing cells, and in many nerve fibers within the islets.
    [Show full text]
  • Variable Priming of a Docked Synaptic Vesicle PNAS PLUS
    Variable priming of a docked synaptic vesicle PNAS PLUS Jae Hoon Junga,b,c, Joseph A. Szulea,c, Robert M. Marshalla,c, and Uel J. McMahana,c,1 aDepartment of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Physics, Stanford University School of Humanities and Sciences, Stanford, CA 94305; and cDepartment of Biology, Texas A&M University, College Station, TX 77845 Edited by Thomas S. Reese, National Institutes of Health, Bethesda, MD, and approved January 12, 2016 (received for review November 30, 2015) The priming of a docked synaptic vesicle determines the proba- transition. Biochemical and electrophysiological approaches have bility of its membrane (VM) fusing with the presynaptic membrane provided evidence that priming is mediated by interactions be- (PM) when a nerve impulse arrives. To gain insight into the nature tween the SNARE proteins and their regulators (7, 12–14, 24) and of priming, we searched by electron tomography for structural can involve differences in positioning of docked SVs relative to + relationships correlated with fusion probability at active zones of Ca2 channels (25). Biochemistry has also led to the suggestion axon terminals at frog neuromuscular junctions. For terminals that primed SVs may become deprimed (26). fixed at rest, the contact area between the VM of docked vesicles We have previously shown by electron tomography on frog and PM varied >10-fold with a normal distribution. There was no neuromuscular junctions (NMJs) fixed at rest that there are, for merging of the membranes. For terminals fixed during repetitive docked SVs, variations in the extent of the VM–PM contact area evoked synaptic transmission, the normal distribution of contact and in the length of the several AZM macromolecules linking areas was shifted to the left, due in part to a decreased number of the VM to the PM, the so-called ribs, pegs, and pins (2, 27).
    [Show full text]
  • An Arf1 Synthetic Lethal Screen Identifies a New Clathrin Heavy
    Copyright 1998 by the Genetics Society of America An arf1D Synthetic Lethal Screen Identi®es a New Clathrin Heavy Chain Conditional Allele That Perturbs Vacuolar Protein Transport in Saccharomyces cerevisiae Chih-Ying Chen and Todd R. Graham Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235 Manuscript received March 5, 1998 Accepted for publication June 16, 1998 ABSTRACT ADP-ribosylation factor (ARF) is a small GTP-binding protein that is thought to regulate the assembly of coat proteins on transport vesicles. To identify factors that functionally interact with ARF, we have performed a genetic screen in Saccharomyces cerevisiae for mutations that exhibit synthetic lethality with an arf1D allele and de®ned seven genes by complementation tests (SWA1-7 for synthetically lethal with arf1D). Most of the swa mutants exhibit phenotypes comparable to arf1D mutants such as temperature-conditional growth, hypersensitivity to ¯uoride ions, and partial protein transport and glycosylation defects. Here, we report that swa5-1 is a new temperature-sensitive allele of the clathrin heavy chain gene (chc1-5), which carries a frameshift mutation near the 39 end of the CHC1 open reading frame. This genetic interaction between arf1 and chc1 provides in vivo evidence for a role for ARF in clathrin coat assembly. Surprisingly, strains harboring chc1-5 exhibited a signi®cant defect in transport of carboxypeptidase Y or carboxypepti- dase S to the vacuole that was not observed in other chc1 ts mutants. The kinetics of invertase secretion or transport of alkaline phosphatase to the vacuole were not signi®cantly affected in the chc1-5 mutant, further implicating clathrin speci®cally in the Golgi to vacuole transport pathway for carboxypeptidase Y.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]
  • Mechanisms of Synaptic Plasticity Mediated by Clathrin Adaptor-Protein Complexes 1 and 2 in Mice
    Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice Dissertation for the award of the degree “Doctor rerum naturalium” at the Georg-August-University Göttingen within the doctoral program “Molecular Biology of Cells” of the Georg-August University School of Science (GAUSS) Submitted by Ratnakar Mishra Born in Birpur, Bihar, India Göttingen, Germany 2019 1 Members of the Thesis Committee Prof. Dr. Peter Schu Institute for Cellular Biochemistry, (Supervisor and first referee) University Medical Center Göttingen, Germany Dr. Hans Dieter Schmitt Neurobiology, Max Planck Institute (Second referee) for Biophysical Chemistry, Göttingen, Germany Prof. Dr. med. Thomas A. Bayer Division of Molecular Psychiatry, University Medical Center, Göttingen, Germany Additional Members of the Examination Board Prof. Dr. Silvio O. Rizzoli Department of Neuro-and Sensory Physiology, University Medical Center Göttingen, Germany Dr. Roland Dosch Institute of Developmental Biochemistry, University Medical Center Göttingen, Germany Prof. Dr. med. Martin Oppermann Institute of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany Date of oral examination: 14th may 2019 2 Table of Contents List of abbreviations ................................................................................. 5 Abstract ................................................................................................... 7 Chapter 1: Introduction ............................................................................
    [Show full text]
  • Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System
    The Journal of Neuroscience, 0, 2021 • 00(00):000 • 1 Symposium Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System Yasunori Hayashi,1 Lenzie K. Ford,2 Luana Fioriti,3 Leeanne McGurk,4 and Mingjie Zhang5,6 1Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan, 2Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027, 3Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan 20156, Italy, 4Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, 5Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China, and 6School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China Molecules within cells are segregated into functional domains to form various organelles. While some of those organelles are delimited by lipid membranes demarcating their constituents, others lack a membrane enclosure. Recently, liquid-liquid phase separation (LLPS) revolutionized our view of how segregation of macromolecules can produce membraneless organelles. While the concept of LLPS has been well studied in the areas of soft matter physics and polymer chemistry, its significance has only recently been recognized in the field of biology. It occurs typically between macromolecules that have multivalent interactions. Interestingly, these features are
    [Show full text]
  • Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis
    Dynamin Action at the Final Stage of Clathrin- Mediated Endocytosis Ning Fang ( [email protected] ) Georgia State University https://orcid.org/0000-0003-4710-0984 Xiaodong Cheng Georgia State University Kuangcai Chen Georgia State University https://orcid.org/0000-0002-9321-9225 Bin Dong Georgia State University https://orcid.org/0000-0002-3196-0712 Meek Yang Georgia State University Seth Filbrun Georgia State University Yong Myoung Georgia State University Teng-Xiang Huang Georgia State University Yan Gu The Bristol-Myers Squibb Company Gufeng Wang Georgia State University Article Keywords: Dynamin, clathrin-mediated endocytosis, scission, vesicle ssion Posted Date: February 5th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-134570/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Dynamin plays an important role in clathrin-mediated endocytosis by cutting the neck of nascent vesicles from the cell membrane. Gold nanorods were used as imaging probes to observe dynamin action on cargo vesicles during live endocytosis events. Invariant is that at the peak of dynamin accumulation, the cargo-containing vesicle always gives abrupt, right-handed rotations that nishes in a short time (~ 0.28 s). The large and quick twist, herein named the super twist, is the result of the coordinated dynamin helix action upon GTP hydrolysis. After the super twist, the rotational freedom of the vesicle drastically increases, accompanied with simultaneous or delayed translational movement, indicating that it detaches from the cell membrane. These observations suggest that dynamin-mediated scission at the nal stage involves a large torque generated by coordinated actions of multiple dynamins in the helix, which is the main driving force for scission.
    [Show full text]
  • Part III: Modeling Neurotransmission – a Cholinergic Synapse
    Part III: Modeling Neurotransmission – A Cholinergic Synapse Operation of the nervous system is dependent on the flow of information through chains of neurons functionally connected by synapses. The neuron conducting impulses toward the synapse is the presynaptic neuron, and the neuron transmitting the signal away from the synapse is the postsynaptic neuron. Chemical synapses are specialized for release and reception of chemical neurotransmitters. For the most part, neurotransmitter receptors in the membrane of the postsynaptic cell are either 1.) channel-linked receptors, which mediate fast synaptic transmission, or 2.) G protein-linked receptors, which oversee slow synaptic responses. Channel-linked receptors are ligand-gated ion channels that interact directly with a neurotransmitter and are called ionotropic receptors. Alternatively, metabotropic receptors do not have a channel that opens or closes but rather, are linked to a G-protein. Once the neurotransmitter binds to the metabotropic receptor, the receptor activates the G-protein which, in turn, goes on to activate another molecule. 3a. Model the ionotropic cholinergic synapse shown below. Be sure to label all of the following: voltage-gated sodium channel, voltage-gated potassium channel, neurotransmitter, synaptic vesicle, presynaptic cell, postsynaptic cell, potassium leak channel, sodium-potassium pump, synaptic cleft, acetylcholine receptor, acetylcholinesterase, calcium channel. When a nerve impulse (action potential) reaches the axon terminal, it sets into motion a chain of events that triggers the release of neurotransmitter. You will next model the events of neurotransmission at a cholinergic synapse. Cholinergic synapses utilize acetylcholine as the chemical of neurotransmission. MSOE Center for BioMolecular Modeling Synapse Kit: Section 3-6 | 1 Step 1 - Action potential arrives at the Step 2 - Calcium channels open in the terminal end of the presynaptic cell.
    [Show full text]
  • RIM-BP2 Primes Synaptic Vesicles Via Recruitment of Munc13-1 At
    RESEARCH ARTICLE RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses Marisa M Brockmann1†, Marta Maglione2,3,4†, Claudia G Willmes5†, Alexander Stumpf6, Boris A Bouazza1, Laura M Velasquez6, M Katharina Grauel1, Prateep Beed6, Martin Lehmann3, Niclas Gimber6, Jan Schmoranzer4, Stephan J Sigrist2,4,5*, Christian Rosenmund1,4*, Dietmar Schmitz4,5,6* 1Institut fu¨ r Neurophysiologie, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 2Freie Universita¨ t Berlin, Institut fu¨ r Biologie, Berlin, Germany; 3Leibniz-Forschungsinstitut fu¨ r Molekulare Pharmakologie (FMP), Berlin, Germany; 4NeuroCure Cluster of Excellence, Berlin, Germany; 5DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; 6Neuroscience Research Center, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across *For correspondence: different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in [email protected] (SJS); neurotransmitter release at different central murine synapses and thus contributes to synaptic [email protected] diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on (CR); neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal [email protected] (DS) mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting †These authors contributed vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active equally to this work zone.
    [Show full text]
  • Interaction Between Liprin-Αand GIT1 Is Required for AMPA Receptor
    The Journal of Neuroscience, March 1, 2003 • 23(5):1667–1677 • 1667 Interaction between Liprin-␣ and GIT1 Is Required for AMPA Receptor Targeting Jaewon Ko,1 Seho Kim,1 Juli G. Valtschanoff,2 Hyewon Shin,1 Jae-Ran Lee,1 Morgan Sheng,3 Richard T. Premont,4 Richard J. Weinberg,2 and Eunjoon Kim1 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea, 2Department of Cell Biology and Anatomy, University of North Carolina Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, 3Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and 4Department of Medicine (Gastroenterology), Duke University Medical Center, Durham, North Carolina 27710 Liprin-␣ is a multidomain protein that interacts with the LAR family of receptor protein tyrosine phosphatases and the GRIP/ABP family of AMPA receptor-interacting proteins. Previous studies have indicated that liprin-␣ regulates the development of presynaptic active zones and that the association of liprin-␣ with GRIP is required for postsynaptic targeting of AMPA receptors. However, the underlying molecular mechanisms are not well understood. Here we report that liprin-␣ directly interacts with GIT1, a multidomain protein with GTPase-activating protein activity for the ADP-ribosylation factor family of small GTPases known to regulate protein trafficking and the actin cytoskeleton. Electron microscopic analysis indicates that GIT1 distributes to the region of postsynaptic density (PSD) as well as presynaptic active zones. GIT1 is enriched in PSD fractions and forms a complex with liprin-␣, GRIP, and AMPA receptors in brain.
    [Show full text]
  • Membrane Remodeling in Clathrin-Mediated Endocytosis Volker Haucke1,2,* and Michael M
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs216812. doi:10.1242/jcs.216812 REVIEW Membrane remodeling in clathrin-mediated endocytosis Volker Haucke1,2,* and Michael M. Kozlov3,* ABSTRACT membrane fission and vesicle uncoating to eventually allow fusion Clathrin-mediated endocytosis is an essential cellular mechanism by of the nascent endocytic vesicle with endosomes (Box 1). which all eukaryotic cells regulate their plasma membrane composition In spite of important advances in the characterization of these to control processes ranging from cell signaling to adhesion, migration factors, key questions regarding the endocytic process remain. and morphogenesis. The formation of endocytic vesicles and For example, different models have been proposed regarding the tubules involves extensive protein-mediated remodeling of the initiation of clathrin-coated pit (CCP) formation and the onset of plasma membrane that is organized in space and time by protein– membrane curvature acquisition. Moreover, knowledge regarding protein and protein–phospholipid interactions. Recent studies the nanoscale distribution of endocytic proteins within the bilayer combining high-resolution imaging with genetic manipulations of plane during vesicle formation and the mechanisms that guide the endocytic machinery and with theoretical approaches have led their orchestrated assembly and disassembly is only now beginning to novel multifaceted phenomenological data of the temporal and to emerge. Finally, our understanding of the nature and dynamics spatial organization of the endocytic reaction. This gave rise to of membrane phospholipids (Box 2) and their associations with various – often conflicting – models as to how endocytic proteins endocytic proteins during endocytic membrane remodeling and their association with lipids regulate the endocytic protein remains limited.
    [Show full text]
  • Cryo-Tomography of Coat Complexes ISSN 2059-7983
    research papers Visualizing membrane trafficking through the electron microscope: cryo-tomography of coat complexes ISSN 2059-7983 Evgenia A. Markova and Giulia Zanetti* Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England. Received 8 March 2019 *Correspondence e-mail: [email protected] Accepted 12 April 2019 Coat proteins mediate vesicular transport between intracellular compartments, Keywords: cryo-electron tomography; which is essential for the distribution of molecules within the eukaryotic cell. three-dimensional reconstruction; coat proteins; The global arrangement of coat proteins on the membrane is key to their vesicular transport; COPII; subtomogram function, and cryo-electron tomography and subtomogram averaging have been averaging. used to study membrane-bound coat proteins, providing crucial structural insight. This review outlines a workflow for the structural elucidation of coat proteins, incorporating recent developments in the collection and processing of cryo-electron tomography data. Recent work on coat protein I, coat protein II and retromer performed on in vitro reconstitutions or in situ is summarized. These studies have answered long-standing questions regarding the mechanisms of membrane binding, polymerization and assembly regulation of coat proteins. 1. Introduction Recent advances in cryo-electron microscopy (cryo-EM) have enabled numerous high-resolution studies which have addressed long-standing structural biology questions. The large body of cryo-EM work carried out for protein structure characterization has utilized single-particle electron micro- scopy (Cheng, 2018). Recently, developments in hardware, data collection and data processing have placed cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) at the forefront of structural studies of repetitive assemblies, reaching resolutions comparable to those of single-particle EM (Schur et al., 2016; Wan et al., 2017; Hutchings et al., 2018; Dodonova et al., 2017; Himes & Zhang, 2018).
    [Show full text]