Identification of Synaptic Proteins and Their Isoform Mrnas In

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Synaptic Proteins and Their Isoform Mrnas In Proc. Natl. Acad. Sci. USA Vol. 91, pp. 12487-12491, December 1994 Cell Biology Identification of synaptic proteins and their isoform mRNAs in compartments of pancreatic endocrine cells (exocytosis/secretion/insulin/diabetes) GUNILLA JACOBSSON*, ANDREW J. BEANt, RICHARD H. SCHELLERt, LISA JUNTTI-BERGGRENt, JUDE T. DEENEYt, PER-OLOF BERGGRENt AND BJORN MEISTER*§ *Department of Neuroscience and tRolf Luft's Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, S-171 77 Stockholm, Sweden; and tDepartment of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Beckman Center, Stanford University, Stanford, CA 94305 Communicated by Tomas Hokfelt, August 30, 1994 ABSTRACT Several proteins that are of importance for clostridial neurotoxins, including tetanus toxin and botuli- membrane trafficking in the nerve terminal have recently been num neurotoxin B, whereas botulinum neurotoxins D and F characterized. We have used Western blot and immunohis- are capable of cleaving both forms of VAMP (10-12). tochemistry to show that synaptotagmin, synaptobrevin/VAMP VAMP-1 and VAMP-2 are encoded by two distinct genes (13) (vesicle-associated membrane protein), SNAP-25 (synaptosom- and are differentially expressed in the nervous system (14). al-associated protein of 25 kDa), and syntaxin proteins are Cellubrevin is a homologue of VAMP, which is present in a present in cells of the islets of Langerhans in the endocrine wide variety of tissues and may be a membrane trafficking pancreas. Synaptotagmin-like immunoreactivity (-LI) was lo- protein of a constitutively recycling pathway (15). calized to granules within the cytoplasm of a few endocrine cells In contrast to synaptotagmin and VAMP, the synaptoso- located in the periphery of the islets, identified as somatostatin- mal-associated protein of 25 kDa (SNAP-25) is located at the containing cells, and in many nerve fibers within the islets. presynaptic plasma membrane (16, 17). It is a substrate for VAMP-LI was seen in granules of virtually all pancreatic islet palmitoylation, implying that fatty acylation may be involved cells and also in nerve fibers. SNAP-25-LI and syntaxin-LI were in membrane targeting ofthe protein. SNAP-25 is cleaved by predominantly present in the plasma membrane ofthe endocrine botulinum neurotoxins A and E (11, 12, 18). SNAP-25 is cells, including insulin-producing (I cells. In situ hybridization, proposed to be a component of a 20S multiprotein complex using isoform-specific oligonucleotide probes, detected that mediates vesicle docking and fusion (19, 20). VAMP-2, cellubrevin, SNAP-25, syntaxin 1A, 4, and 5, and The syntaxin family of vesicular transport receptors (21) munc-18 mRNAs in isolated pancreatic islets and in insulin- consists of proteins that have hydrophobic domains that producing cells. The results show the presence of several syn- anchor the proteins to the cytoplasmic surface of the plasma aptic proteins at protein and mRNA levels in pancreatic islet membrane. Syntaxins interact with synaptotagmin (22), cells, suggesting that they may have specific roles in the molec- N-ethylmaleimide-sensitive factor (NSF), soluble NSF- ular regulation of exocytosis also in insulin-secreting cells. attachment proteins (SNAPs) (19, 20), and the N-type ofCa2+ channels (22). Consequently, syntaxins have been suggested Release ofneurotransmitters from nerve terminals occurs via to be involved in the docking and/orfusion ofsynaptic vesicles regulated exocytosis of synaptic vesicles. At the presynaptic with the plasma membrane (21, 22). A brain protein of67 kDa nerve terminal, vesicles interact with the cytoskeleton and that stably binds to the N terminus of syntaxin was recently with soluble vesicle-binding proteins prior to docking at identified as a mammalian homologue of the Caenorhabditis specialized membrane sites known as the active zone (1). elegans gene unc-18 and termed munc-18 (23). The protein After voltage-gated Ca2+ influx, the vesicle and the plasma munc-18 (also termed n-secl) has been suggested to represent membrane fuse, releasing the vesicle contents into the syn- a novel component of the VAMP/synaptotagmin/syntaxin aptic cleft. synaptic vesicle fusion complex (23). A class of proteins that are involved in the targeted There is evidence suggesting that the molecular machinery movement and fusion reactions of the synaptic vesicle mem- for secretion is conserved in different cell types and in brane have recently been identified (see refs. 2 and 3). different species-i.e., the molecular components of secre- Synaptotagmin (p65) is an integral membrane protein of tion from endocrine cells of the pancreas may share many synaptic vesicles, which has a cytoplasmic Ca2+-binding attributes in common with those identified in neurons and domain. Ca2+ binding increases the ability of synaptotagmin there are several similarities between secretory mechanisms to bind phospholipids, suggesting a role in vesicle-plasma in yeast and mammalian cells (2, 3, 24). To identify synaptic membrane fusion (4). Introduction of anti-synaptotagmin proteins in cells of the endocrine pancreas-i.e., islets of antibodies orfragments ofsynaptotagmin fusion proteins into Langerhans-we have used Western blot, immunohis- cultured cells impairs exocytosis (5). In vitro, synaptotagmin tochemistry, and in situ hybridization. binds to several plasma membrane proteins, including syn- taxins (see below), neurexins, and Ca2+ channels (6). MATERIALS AND METHODS The vesicle-associated membrane proteins VAMP-1 (syn- Western Blot. Previously dissected tissues or cultured cells aptobrevin 1) and VAMP-2 (synaptobrevin 2) are homolo- were homogenized in Hepes buffer (10 mM Hepes-KOH, pH gous proteins of 18 and 17 kDa, respectively, which are 7.5/2.5 mM KOAc/1 mM MgCl2/0.1 mM EGTA/0.03 M anchored to the cytoplasmic surface of the synaptic vesicles by a carboxyl-terminal transmembrane domain (7-9). Abbreviations: VAMP, vesicle-associated membrane protein; -LI, VAMP-2 has been identified as a selective substrate for -like immunoreactivity; NSF, N-ethylmalemide-sensitive factor; SNAP, soluble NSF-attachment protein; SNAP-25, synaptosomal- associated protein of 25 kDa. The publication costs of this article were defrayed in part by page charge §To whom reprint requests should be addressed at: Department of payment. This article must therefore be hereby marked "advertisement" Neuroscience, The Berzelius Laboratory, Karolinska Institute, 171 in accordance with 18 U.S.C. §1734 solely to indicate this fact. 77 Stockholm, Sweden. 12487 Downloaded by guest on September 30, 2021 12488 Cell Biology: Jacobsson et al. Proc. Natl. Acad. Sci. USA 91 (1994) phenylmethylsulfonyl fluoride) with a ground glass Duvall. Triton X-100 was added to the homogenates to a concentra- tion of 2% and they were incubated at 4°C for 60 min. Insoluble material was removed by centrifugation at 15,000 CL rpm for 15 min, and protein concentrations were estimated 0 0 (Bio-Rad protein assay). Proteins were resolved by using U SDS/PAGE and electrophoretically transferred to nitrocel- lulose in 384 mM glycine/50 mM Tris/10% MeOH. Nitro- C cellulose fiters were cut into strips based on the movement in 3O o z of prestained size markers run in lanes adjacent to the i0 0 M samples. The filters were incubated with blocking buffer [5% synaptotagmin dry milk in phosphate-buffered saline (PBS)] for 60 min and then the appropriate filter strip was incubated with either syntaxin non-isoform-specific antiserum to VAMP (1:1000; kind gift of W. S. Trimble), SNAP-25 (1:1000; SMI-81, Sternberger _ S~~~NAP-25 Monoclonals, Baltimore), syntaxin (1:1000) (25), or synap- totagmin (1:4000) (26) for 18 hr at 40C. Filters were washed VAMP (10 mM Tris/150 mM NaCl/0.5% Tween 20) and incubated with horseradish peroxidase-conjugated anti-rabbit or anti- FIG. 1. Western blot analysis of 10 ug of protein from dissected mouse secondary antisera (4°C for 60 min). After washing as whole rat pancreas, ob/ob mouse pancreas, ob/ob mouse cells, or before, bands were visualized using chemiluminescence RIN m5F cells was separated by SDS/PAGE and transferred to (Amersham ECL). Filters were exposed for 0.5-3 min. nitrocellulose. The blot was probed with antisera to synaptotagmin, Immunohistochemistry. Male Sprague-Dawley rats (150- syntaxin, SNAP-25, and VAMP and detected using ECL (Amer- 200 g; B & K Universal, Stockholm) and ob/ob were anes- sham). Bands representing 65 kDa (synaptotagmin), 35 kDa (syn- taxin), 25 kDa (SNAP-25), and 18 kDa (VAMP) are seen. Low levels thetized with sodium pentobarbital (Mebumal; 40 mg/kg i.p.) of synaptotagmin are found in pancreas and cells from ob/ob mice, and perfused via the ascending aorta with 50 ml of Ca2+-free and even lower levels are detected in RIN m5F cells. No synap- Tyrode's solution followed by a formalin/picric acid fixative totagmin protein could be detected in rat pancreas. Syntaxin and (4% paraformaldehyde/0.4% picric acid in 0.16 M phosphate SNAP-25 are demonstrated in all tissues, with particularly high levels buffer, pH 6.9) for 6 min. The pancreas was rapidly dissected in RIN m5F cells. VAMP is detected in all tissues. out, postfixed in the same fixative for 90 min, and rinsed for at least 24 hr in 0.1 M phosphate buffer (pH 7.4) containing and minimal homology with GenBank-entered nucleotide 10% sucrose. Sections were cut (10 ,um) in a cryostat and sequences and were synthesized (Scandinavian Gene Syn- incubated at 4°C overnight with rabbit non-isoform-specific thesis, Koping,
Recommended publications
  • Antibodies to Snare Complex Proteins
    ANTIBODIES TO SNARE COMPLEX PROTEINS Antibodies to SNARE Complex Proteins Synaptophysin VAMP/Synaptobrevin SNAP-25 Syntaxin CDCrel-1 Synaptotagmin-1 Munc18-1 Synapsin-1 INTERNATIONAL VERSION www.cedarlanelabs.com/SNARE CEDARLANE® is an ISO 9001 and ISO 13485 registered company Antibodies to SNARE Complex Proteins SNARE proteins are a large protein superfamily consisting of more than 60 members in yeast and mammals. The primary role of these proteins is to mediate fusion of vesicles with their target membrane-bound compartments (such as lysosomes). The most well studied SNARE proteins are those involved in mediating synaptic vesicle docking at the pre-synaptic membrane of neurons. During this process, syntaxin-1, SNAP-25 and munc18-1 associate and form a complex at the pre-synaptic membrane. This complex interacts with synaptobrevin-2 and synaptotagmin-1 located in synaptic vesicles and initiates docking, priming and fusion at the membrane. This fusion event leads to release of the vesicle's cargo into the synaptic cleft, where it can ultimately interact with the post-synaptic neuron. Antibodies to: Synaptophysin Synaptophysin is a 38 KDa synaptic vesicle (SV) glycoprotein containing four transmembrane domains. It is present in SVs of the neuroendocrine system, brain, spinal cord, retina, adrenal medulla and at neuromuscular junctions. Synaptophysin acts as a marker for neuroendocrine tumours and has been used to study the distribution of synapses within the brain due to its ubiquity at these regions. Although the exact function of synaptophysin is still unknown, several lines of evidence suggest it may have many important roles in SV exo and endocytosis. These include regulation of SNARE assembly, fusion pore formation initiating neurotransmitter release, and activation of SV endocytosis.
    [Show full text]
  • Defining the Kv2.1–Syntaxin Molecular Interaction Identifies a First-In-Class Small Molecule Neuroprotectant
    Defining the Kv2.1–syntaxin molecular interaction identifies a first-in-class small molecule neuroprotectant Chung-Yang Yeha,b,1, Zhaofeng Yec,d,1, Aubin Moutale, Shivani Gaura,b, Amanda M. Hentonf,g, Stylianos Kouvarosf,g, Jami L. Salomana, Karen A. Hartnett-Scotta,b, Thanos Tzounopoulosa,f,g, Rajesh Khannae, Elias Aizenmana,b,g,2, and Carlos J. Camachoc,2 aDepartment of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; bPittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; cDepartment of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; dSchool of Medicine, Tsinghua University, Beijing 100871, China; eDepartment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724; fDepartment of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and gPittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Lily Yeh Jan, University of California, San Francisco, CA, and approved June 19, 2019 (received for review February 27, 2019) + The neuronal cell death-promoting loss of cytoplasmic K follow- (13). The Kv2.1-dependent cell death pathway is normally initiated ing injury is mediated by an increase in Kv2.1 potassium channels in by the oxidative liberation of zinc from intracellular metal-binding the plasma membrane. This phenomenon relies on Kv2.1 binding to proteins (14), leading to the sequential phosphorylation of syntaxin 1A via 9 amino acids within the channel intrinsically disor- Kv2.1 residues Y124 and S800 by Src and p38 kinases, respectively dered C terminus. Preventing this interaction with a cell and blood- (15–17).
    [Show full text]
  • Variable Priming of a Docked Synaptic Vesicle PNAS PLUS
    Variable priming of a docked synaptic vesicle PNAS PLUS Jae Hoon Junga,b,c, Joseph A. Szulea,c, Robert M. Marshalla,c, and Uel J. McMahana,c,1 aDepartment of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Physics, Stanford University School of Humanities and Sciences, Stanford, CA 94305; and cDepartment of Biology, Texas A&M University, College Station, TX 77845 Edited by Thomas S. Reese, National Institutes of Health, Bethesda, MD, and approved January 12, 2016 (received for review November 30, 2015) The priming of a docked synaptic vesicle determines the proba- transition. Biochemical and electrophysiological approaches have bility of its membrane (VM) fusing with the presynaptic membrane provided evidence that priming is mediated by interactions be- (PM) when a nerve impulse arrives. To gain insight into the nature tween the SNARE proteins and their regulators (7, 12–14, 24) and of priming, we searched by electron tomography for structural can involve differences in positioning of docked SVs relative to + relationships correlated with fusion probability at active zones of Ca2 channels (25). Biochemistry has also led to the suggestion axon terminals at frog neuromuscular junctions. For terminals that primed SVs may become deprimed (26). fixed at rest, the contact area between the VM of docked vesicles We have previously shown by electron tomography on frog and PM varied >10-fold with a normal distribution. There was no neuromuscular junctions (NMJs) fixed at rest that there are, for merging of the membranes. For terminals fixed during repetitive docked SVs, variations in the extent of the VM–PM contact area evoked synaptic transmission, the normal distribution of contact and in the length of the several AZM macromolecules linking areas was shifted to the left, due in part to a decreased number of the VM to the PM, the so-called ribs, pegs, and pins (2, 27).
    [Show full text]
  • Mechanisms of Synaptic Plasticity Mediated by Clathrin Adaptor-Protein Complexes 1 and 2 in Mice
    Mechanisms of synaptic plasticity mediated by Clathrin Adaptor-protein complexes 1 and 2 in mice Dissertation for the award of the degree “Doctor rerum naturalium” at the Georg-August-University Göttingen within the doctoral program “Molecular Biology of Cells” of the Georg-August University School of Science (GAUSS) Submitted by Ratnakar Mishra Born in Birpur, Bihar, India Göttingen, Germany 2019 1 Members of the Thesis Committee Prof. Dr. Peter Schu Institute for Cellular Biochemistry, (Supervisor and first referee) University Medical Center Göttingen, Germany Dr. Hans Dieter Schmitt Neurobiology, Max Planck Institute (Second referee) for Biophysical Chemistry, Göttingen, Germany Prof. Dr. med. Thomas A. Bayer Division of Molecular Psychiatry, University Medical Center, Göttingen, Germany Additional Members of the Examination Board Prof. Dr. Silvio O. Rizzoli Department of Neuro-and Sensory Physiology, University Medical Center Göttingen, Germany Dr. Roland Dosch Institute of Developmental Biochemistry, University Medical Center Göttingen, Germany Prof. Dr. med. Martin Oppermann Institute of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany Date of oral examination: 14th may 2019 2 Table of Contents List of abbreviations ................................................................................. 5 Abstract ................................................................................................... 7 Chapter 1: Introduction ............................................................................
    [Show full text]
  • SNAP-24, a Novel Drosophila SNARE Protein 4057 Proteins Were Purified on Glutathione Beads and Cleaved from the GST Fig
    Journal of Cell Science 113, 4055-4064 (2000) 4055 Printed in Great Britain © The Company of Biologists Limited 2000 JCS1894 SNAP-24, a Drosophila SNAP-25 homologue on granule membranes, is a putative mediator of secretion and granule-granule fusion in salivary glands Barbara A. Niemeyer*,‡ and Thomas L. Schwarz§ Department of Molecular and Cellular Physiology, Stanford Medical School, Stanford, CA 94305, USA *Present address: Department of Pharmacology and Toxicology, School of Medicine, University of Saarland, D-66421 Homburg, Germany ‡Author for correspondence (e-mail: [email protected]) §Present address: Harvard Medical School, Division of Neuroscience, The Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Accepted 16 September; published on WWW 31 October 2000 SUMMARY Fusion of vesicles with target membranes is dependent is not concentrated in synaptic regions. In vitro studies, on the interaction of target (t) and vesicle (v) SNARE however, show that SNAP-24 can form core complexes with (soluble NSF (N-ethylmaleimide-sensitive fusion protein) syntaxin and both synaptic and non-synaptic v-SNAREs. attachment protein receptor) proteins located on opposing High levels of SNAP-24 are found in larval salivary glands, membranes. For fusion at the plasma membrane, the t- where SNAP-24 localizes mainly to granule membranes SNARE SNAP-25 is essential. In Drosophila, the only rather than the plasma membrane. During glue secretion, known SNAP-25 isoform is specific to neuronal axons and the massive exocytotic event of these glands, SNAP-24 synapses and additional t-SNAREs must exist that mediate containing granules fuse with one another and the apical both non-synaptic fusion in neurons and constitutive and membrane, suggesting that glue secretion utilizes regulated fusion in other cells.
    [Show full text]
  • Is Synaptotagmin the Calcium Sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littleton
    315 Is synaptotagmin the calcium sensor? Motojiro Yoshihara, Bill Adolfsen and J Troy Littletonà After much debate, recent progress indicates that the synaptic synaptotagmins, which are transmembrane proteins con- vesicle protein synaptotagmin I probably functions as the taining tandem calcium-binding C2 domains (C2A and calcium sensor for synchronous neurotransmitter release. C2B) (Figure 1a). Synaptotagmin I is an abundant cal- Following calcium influx into presynaptic terminals, cium-binding synaptic vesicle protein [8,9] that has been synaptotagmin I rapidly triggers the fusion of synaptic vesicles demonstrated via genetic studies to be important for with the plasma membrane and underlies the fourth-order efficient synaptic transmission in vivo [10–13]. The C2 calcium cooperativity of release. Biochemical and genetic domains of synaptotagmin I bind negatively-charged studies suggest that lipid and SNARE interactions underlie phospholipids in a calcium-dependent manner [9,14,15, synaptotagmin’s ability to mediate the incredible speed of 16–18]. There is compelling evidence that phospholipid vesicle fusion that is the hallmark of fast synaptic transmission. binding is an effector interaction in vesicle fusion, as the calcium dependence of this process ( 74 mM) and its Addresses rapid kinetics (on a millisecond scale) (Figure 1b) fit Picower Center for Learning and Memory, Department of Biology and reasonably well with the predicted requirements of Department of Brain and Cognitive Sciences, Massachusetts synaptic transmission [15]. In addition to phospholipid Institute of Technology, Cambridge, MA 02139, USA Ãe-mail: [email protected] binding, the calcium-stimulated interaction between synaptotagmin and the t-SNAREs syntaxin and SNAP- 25 [15,19–23] provides a direct link between calcium and Current Opinion in Neurobiology 2003, 13:315–323 the fusion complex.
    [Show full text]
  • Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System
    The Journal of Neuroscience, 0, 2021 • 00(00):000 • 1 Symposium Liquid-Liquid Phase Separation in Physiology and Pathophysiology of the Nervous System Yasunori Hayashi,1 Lenzie K. Ford,2 Luana Fioriti,3 Leeanne McGurk,4 and Mingjie Zhang5,6 1Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan, 2Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027, 3Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Istituto Di Ricovero e Cura a Carattere Scientifico, Milan 20156, Italy, 4Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, 5Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China, and 6School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China Molecules within cells are segregated into functional domains to form various organelles. While some of those organelles are delimited by lipid membranes demarcating their constituents, others lack a membrane enclosure. Recently, liquid-liquid phase separation (LLPS) revolutionized our view of how segregation of macromolecules can produce membraneless organelles. While the concept of LLPS has been well studied in the areas of soft matter physics and polymer chemistry, its significance has only recently been recognized in the field of biology. It occurs typically between macromolecules that have multivalent interactions. Interestingly, these features are
    [Show full text]
  • Sorting Nexin-21 Is a Scaffold for the Endosomal Recruitment of Huntingtin
    Danson, C. , Pearson, N., Heesom, K., & Cullen, P. (2018). Sorting nexin-21 is a scaffold for the endosomal recruitment of huntingtin. Journal of Cell Science. https://doi.org/10.1242/jcs.211672 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1242/jcs.211672 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Company of Biologists at http://jcs.biologists.org/content/131/17/jcs211672 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs211672. doi:10.1242/jcs.211672 RESEARCH ARTICLE Sorting nexin-21 is a scaffold for the endosomal recruitment of huntingtin Chris M. Danson1, Neil Pearson1, Kate J. Heesom2 and Peter J. Cullen1,* ABSTRACT transport from the trans-Golgi network (TGN) (Maxfield and The endo-lysosomal network serves an essential role in determining McGraw, 2004; Johannes and Popoff, 2008; Grant and Donaldson, the fate of endocytosed transmembrane proteins and their associated 2009; Huotari and Helenius, 2011; Johannes and Wunder, 2011; proteins and lipids. Sorting nexins (SNXs) play a central role in the Hsu et al., 2012). These pathways converge at the sorting endosome, functional organisation of this network.
    [Show full text]
  • RIM-BP2 Primes Synaptic Vesicles Via Recruitment of Munc13-1 At
    RESEARCH ARTICLE RIM-BP2 primes synaptic vesicles via recruitment of Munc13-1 at hippocampal mossy fiber synapses Marisa M Brockmann1†, Marta Maglione2,3,4†, Claudia G Willmes5†, Alexander Stumpf6, Boris A Bouazza1, Laura M Velasquez6, M Katharina Grauel1, Prateep Beed6, Martin Lehmann3, Niclas Gimber6, Jan Schmoranzer4, Stephan J Sigrist2,4,5*, Christian Rosenmund1,4*, Dietmar Schmitz4,5,6* 1Institut fu¨ r Neurophysiologie, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany; 2Freie Universita¨ t Berlin, Institut fu¨ r Biologie, Berlin, Germany; 3Leibniz-Forschungsinstitut fu¨ r Molekulare Pharmakologie (FMP), Berlin, Germany; 4NeuroCure Cluster of Excellence, Berlin, Germany; 5DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; 6Neuroscience Research Center, Charite´ – Universita¨ tsmedizin Berlin, corporate member of Freie Universita¨ t Berlin, Humboldt-Universita¨ t zu Berlin, and Berlin Institute of Health, Berlin, Germany Abstract All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across *For correspondence: different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in [email protected] (SJS); neurotransmitter release at different central murine synapses and thus contributes to synaptic [email protected] diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on (CR); neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal [email protected] (DS) mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting †These authors contributed vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active equally to this work zone.
    [Show full text]
  • Interaction Between Liprin-Αand GIT1 Is Required for AMPA Receptor
    The Journal of Neuroscience, March 1, 2003 • 23(5):1667–1677 • 1667 Interaction between Liprin-␣ and GIT1 Is Required for AMPA Receptor Targeting Jaewon Ko,1 Seho Kim,1 Juli G. Valtschanoff,2 Hyewon Shin,1 Jae-Ran Lee,1 Morgan Sheng,3 Richard T. Premont,4 Richard J. Weinberg,2 and Eunjoon Kim1 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea, 2Department of Cell Biology and Anatomy, University of North Carolina Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, 3Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and 4Department of Medicine (Gastroenterology), Duke University Medical Center, Durham, North Carolina 27710 Liprin-␣ is a multidomain protein that interacts with the LAR family of receptor protein tyrosine phosphatases and the GRIP/ABP family of AMPA receptor-interacting proteins. Previous studies have indicated that liprin-␣ regulates the development of presynaptic active zones and that the association of liprin-␣ with GRIP is required for postsynaptic targeting of AMPA receptors. However, the underlying molecular mechanisms are not well understood. Here we report that liprin-␣ directly interacts with GIT1, a multidomain protein with GTPase-activating protein activity for the ADP-ribosylation factor family of small GTPases known to regulate protein trafficking and the actin cytoskeleton. Electron microscopic analysis indicates that GIT1 distributes to the region of postsynaptic density (PSD) as well as presynaptic active zones. GIT1 is enriched in PSD fractions and forms a complex with liprin-␣, GRIP, and AMPA receptors in brain.
    [Show full text]
  • Analysis of Protein Phosphorylation in Nerve Terminal Reveals Extensive
    RESEARCH ARTICLE Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis Mahdokht Kohansal-Nodehi1, John JE Chua2,3,4,5, Henning Urlaub6,7, Reinhard Jahn1*, Dominika Czernik1* 1Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Go¨ ttingen, Germany; 2Interactomics and Intracellular Trafficking laboratory, National University of Singapore, Singapore, Singapore; 3Department of Physiology, National University of Singapore, Singapore, Singapore; 4Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; 5Neurobiology/ Ageing Programme, National University of Singapore, Singapore, Singapore; 6Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Go€ttingen, Germany; 7Bioanalytics Group, University Medical Center Go¨ ttingen, Go¨ ttingen, Germany Abstract Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering
    [Show full text]
  • Changes in Synaptic Active Zone Proteins in Huntington's Disease
    Huang et al. Acta Neuropathologica Communications (2020) 8:77 https://doi.org/10.1186/s40478-020-00949-y RESEARCH Open Access No symphony without bassoon and piccolo: changes in synaptic active zone proteins in Huntington’s disease Ting-Ting Huang1, Ruben Smith2, Karl Bacos3, Dong-Yan Song1, Richard M. Faull4, Henry J. Waldvogel4 and Jia-Yi Li1,5,6* Abstract Prominent features of HD neuropathology are the intranuclear and cytoplasmic inclusions of huntingtin and striatal and cortical neuronal cell death. Recently, synaptic defects have been reported on HD-related studies, including impairment of neurotransmitter release and alterations of synaptic components. However, the definite characteristics of synapse dysfunction and the underlying mechanisms remain largely unknown. We studied the gene expression levels and patterns of a number of proteins forming the cytoskeletal matrix of the presynaptic active zones in HD transgenic mice (R6/1), in hippocampal neuronal cultures overexpressing mutant huntingtin and in postmortem brain tissues of HD patients. To investigate the interactions between huntingtin and active proteins, we performed confocal microscopic imaging and immunoprecipitation in mouse and HEK 293 cell line models. The mRNA and protein levels of Bassoon were reducedinmouseandcellculturemodelsofHDandinbrain tissues of patients with HD. Moreover, a striking re- distribution of a complex of proteins including Bassoon, Piccolo and Munc 13–1 from the cytoplasm and synapses into intranuclear huntingtin aggregates with loss of active zone proteins and dendritic spines. This re-localization was age- dependent and coincided with the formation of huntingtin aggregates. Using co-immunoprecipitation, we demonstrated that huntingtin interacts with Bassoon, and that this interaction is likely mediated by a third linking protein.
    [Show full text]