Increased Dosage of DYRK1A and DSCR1 Delays Neuronal Differentiation in Neocortical Progenitor Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cooperation to Amplify Gene-Dosage-Imbalance Effects
Update TRENDS in Molecular Medicine Vol.12 No.10 Research Focus Cooperation to amplify gene-dosage-imbalance effects Susana de la Luna1 and Xavier Estivill2 1 ICREA and Gene Function Group, Genes and Disease Program, Center for Genomic Regulation-CRG, 08003-Barcelona, Spain 2 Genetic Causes of Disease Group, Genes and Disease Program, Center for Genomic Regulation-CRG and Pompeu Fabra University, Barcelona Biomedical Research Park, 08003-Barcelona, Spain Trisomy 21, also known as Down syndrome (DS), is a From gene-dosage imbalance to pathology complex developmental disorder that affects many ThepresenceofanextracopyofHSA21 genes predicts an organs, including the brain, heart, skeleton and increased expression of 1.5-fold at the RNA level for immune system. A working hypothesis for understand- those genes in trisomy. Experiments in which this effect ing the consequences of trisomy 21 is that the over- has been evaluated indicate that this is indeed the case expression of certain genes on chromosome 21, alone for most HSA21 genes in DS samples and for their or in cooperation, is responsible for the clinical features orthologs in mouse trisomic models [3].Inthesimplest of DS. There is now compelling evidence that the scenario, the overexpression of one specific gene would protein products of two genes on chromosome 21, lead to the disturbance of a biological process and, as a Down syndrome candidate region 1 (DSCR1)and result, a single gene would be responsible for each patho- dual-specificity tyrosine-(Y)-phosphorylation regulated logical feature of DS. However, it is more probable that kinase 1A (DYRK1A), interact functionally, and that the overexpression of several of the 250 HSA21 genes their increased dosage cooperatively leads to dysregu- would contribute to alter a functional pathway in a lation of the signaling pathways that are controlled by specific cell at a specific time. -
Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055376; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. -
RCAN2 Isoform 2 Recombinant Protein Cat
RCAN2 Isoform 2 Recombinant Protein Cat. No.: 95-114 RCAN2 Isoform 2 Recombinant Protein Specifications SPECIES: Mouse SOURCE SPECIES: E. coli SEQUENCE: aa 2 - 197 FUSION TAG: Fusion Partner: C-terminal His-tag TESTED APPLICATIONS: ELISA, WB APPLICATIONS: This recombinant protein can be used for WB and ELISA. For research use only. PREDICTED MOLECULAR 26 kDa (Calculated) WEIGHT: Properties PURITY: ~95% PHYSICAL STATE: Liquid 100mM sodium phosphate, 10mM Tris, 500mM NaCl, 25 mM imidazole, 2mM MgCl2, 10% BUFFER: gycerol Store in working aliquots at -70˚C. Avoid freeze/thaw cycles. When working with proteins STORAGE CONDITIONS: care should be taken to keep recombinant protein at a cool and stable temperature. September 29, 2021 1 https://www.prosci-inc.com/rcan2-isoform-2-recombinant-protein-95-114.html Additional Info OFFICIAL SYMBOL: Rcan2 RCAN2 Antibody: Csp2, MCIP2, ZAKI-4, Dscr1l1, Zaki4, Calcipressin-2, Calcineurin inhibitory ALTERNATE NAMES: protein ZAKI-4 ACCESSION NO.: AAH62141 PROTEIN GI NO.: 38328420 GENE ID: 53901 Background and References Regulator of calcineurin 2 (RCAN2), also known as ZAKI4 and DSCR1L1, is expressed as two isoforms differing at their N-terminus. The longer of the two (isoform 1) is expressed exclusively in the brain, while isoform 2 is ubiquitously expressed, with highest expression in brain, heart, and muscle (1,2). Both isoforms bind to the catalytic subunit of calcineurin, a Ca++-dependent protein phosphatase involved in several neuronal functions, though BACKGROUND: their C-terminal region and inhibit calcineurin’s activity (3). Unlike isoform 1 of RCAN2, the expression of the second isoform is not induced by the thyroid hormone T3 (3). -
Regulator of Calcineurin (RCAN): Beyond Down
Molecules and Cells Minireview Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region Sun-Kyung Lee1,2,* and Joohong Ahnn1,2,* 1Department of Life Science, 2Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea *Correspondence: [email protected] (SKL); [email protected] (JA) https://doi.org/10.14348/molcells.2020.0060 www.molcells.org The regulator of calcineurin (RCAN) was first reported as RCAN3 a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across INTRODUCTION species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in The regulator of calcineurin (RCAN) was first reported as a most jawed vertebrates, with one member observed in most Down syndrome critical region 1 (DSCR1), which is encoded invertebrates and fungi. RCAN is most highly expressed in in a region that at that time was thought to participate in the brain and striated muscles, but expression has been reported onset of Down syndrome (DS) (Antonarakis, 2017; Fuentes in many other tissues, as well, including the heart and et al., 1995). Soon after, evidence showed that RCAN binds kidneys. Expression levels of RCAN homologs are responsive to and regulates the Ca2+/calmodulin-dependent serine/thre- to external stressors such as reactive oxygen species, Ca2+, onine phosphatase calcineurin, whose substrates include nu- amyloid β, and hormonal changes and upregulated in clear factor of activated T cells (NFAT), the transcription factor pathological conditions, including Alzheimer’s disease, that regulates gene expression in many cell types, including cardiac hypertrophy, diabetes, and degenerative neuropathy. -
The Genetic Architecture of Down Syndrome Phenotypes Revealed by High-Resolution Analysis of Human Segmental Trisomies
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies Jan O. Korbela,b,c,1, Tal Tirosh-Wagnerd,1, Alexander Eckehart Urbane,f,1, Xiao-Ning Chend, Maya Kasowskie, Li Daid, Fabian Grubertf, Chandra Erdmang, Michael C. Gaod, Ken Langeh,i, Eric M. Sobelh, Gillian M. Barlowd, Arthur S. Aylsworthj,k, Nancy J. Carpenterl, Robin Dawn Clarkm, Monika Y. Cohenn, Eric Dorano, Tzipora Falik-Zaccaip, Susan O. Lewinq, Ira T. Lotto, Barbara C. McGillivrayr, John B. Moeschlers, Mark J. Pettenatit, Siegfried M. Pueschelu, Kathleen W. Raoj,k,v, Lisa G. Shafferw, Mordechai Shohatx, Alexander J. Van Ripery, Dorothy Warburtonz,aa, Sherman Weissmanf, Mark B. Gersteina, Michael Snydera,e,2, and Julie R. Korenbergd,h,bb,2 Departments of aMolecular Biophysics and Biochemistry, eMolecular, Cellular, and Developmental Biology, and fGenetics, Yale University School of Medicine, New Haven, CT 06520; bEuropean Molecular Biology Laboratory, 69117 Heidelberg, Germany; cEuropean Molecular Biology Laboratory (EMBL) Outstation Hinxton, EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; dMedical Genetics Institute, Cedars–Sinai Medical Center, Los Angeles, CA 90048; gDepartment of Statistics, Yale University, New Haven, CT 06520; Departments of hHuman Genetics, and iBiomathematics, University of California, Los Angeles, CA 90095; Departments of jPediatrics and kGenetics, University of North Carolina, Chapel Hill, NC 27599; lCenter for Genetic Testing, -
DYRK1A and RCAN1
BMB reports Mini Review Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1 Joongkyu Park#, Yohan Oh# & Kwang Chul Chung* Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea The most common genetic disorder Down syndrome (DS) dis- 21) (2, 3). Other phenotypic features of DS include cognitive plays various developmental defects including mental re- impairment, learning and memory deficit, a high risk of leuke- tardation, learning and memory deficit, the early onset of mia, a decreased risk of solid tumors, congenital heart disease Alzheimer’s disease (AD), congenital heart disease, and cranio- and hypotonia (3-5). Moreover, DS brains show additional facial abnormalities. Those characteristics result from the ex- neuropathological outcomes such as the arrest of neurogenesis tra-genes located in the specific region called ‘Down syn- and synaptogenesis, and neuronal differentiation defects (6, 7). drome critical region (DSCR)’ in human chromosome 21. In They also exhibit a lower brain weight with reduced neuronal this review, we summarized the recent findings of the density, number, and volume regardless of region and age (6, DYRK1A and RCAN1 genes, which are located on DSCR and 8, 9). Although the cause of these CNS hypoplasias in DS pa- thought to be closely associated with the typical features of DS tients remains unclear, several reports using DS brains and cul- patients, and their implication to the pathogenesis of neural tured DS fibroblasts suggest that it may result from enhanced defects in DS. DYRK1A phosphorylates several transcriptional cell death and impaired cell proliferation (6, 7, 10, 11). -
Identification of Molecular Targets in Head and Neck Squamous Cell Carcinomas Based on Genome-Wide Gene Expression Profiling
1489-1497 7/11/07 18:41 Page 1489 ONCOLOGY REPORTS 18: 1489-1497, 2007 Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling SATOYA SHIMIZU1,2, NAOHIKO SEKI2, TAKASHI SUGIMOTO2, SHIGETOSHI HORIGUCHI1, HIDEKI TANZAWA3, TOYOYUKI HANAZAWA1 and YOSHITAKA OKAMOTO1 Departments of 1Otorhinolaryngology, 2Functional Genomics and 3Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received May 21, 2007; Accepted June 28, 2007 Abstract. DNA amplifications activate oncogenes and are patients and metastases develop in 15-25% of patients (1). hallmarks of nearly all advanced cancers including head and Many factors, such as TNM stage, pathological grade and neck squamous cell carcinoma (HNSCC). Some oncogenes tumor site, influence the prognosis of HNSCC but are not show both DNA copy number gain and mRNA overexpression. sufficient to predict outcome. In addition, treatment often Chromosomal comparative genomic hybridization and oligo- results in impairment of functions such as speech and nucleotide microarrays were used to examine 8 HNSCC cell swallowing, cosmetic disfiguration and mental pain. These lines and a plot of gene expression levels relative to their inflictions significantly erode quality of life. To overcome this position on the chromosome was produced. Three highly situation, there is a need to find novel biomarkers that classify up-regulated genes, NT5C3, ANLN and INHBA, were patients into prognostic groups, to aid identification of high- identified on chromosome 7p14. These genes were subjected risk patients who may benefit from different treatments. to quantitative real-time RT-PCR on cDNA and genomic Comparative genomic hybridization (CGH) has facilitated DNA derived from 8 HNSCC cell lines. -
GSK-3 Kinases Enhance Calcineurin Signaling by Phosphorylation of Rcns
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs Zoe Hilioti,1 Deirdre A. Gallagher,1 Shalini T. Low-Nam,1 Priya Ramaswamy,1 Pawel Gajer,1 Tami J. Kingsbury,1 Christine J. Birchwood,1 Andre Levchenko,2 andKyle W. Cunningham 1,3 1Department of Biology and 2Whitaker Institute for Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA The conservedRCN family of proteins can bindanddirectlyregulate calcin eurin, a Ca2+-activatedprotein phosphatase involvedin immunity, heart growth, muscle development,learning, andother processes. Whereas high levels of RCNs can inhibit calcineurin signaling in fungal andanimal cells, RCNs can also stimulate calcineurin signaling when expressedat endogenouslevels. Here we show t hat the stimulatory effect of yeast Rcn1 involves phosphorylation of a conservedserine residueby Mck1, a mem ber of the GSK-3 family of protein kinases. Mutations at the GSK-3 consensus site of Rcn1 andhuman DS CR1/MCIP1 abolish the stimulatory effects on calcineurin signaling. RCNs may therefore oscillate between stimulatory andinhibitory forms in vivo in a manner similar to the Inhibitor-2 regulators of type 1 protein phosphatase. Computational modeling indicates a biphasic response of calcineurin to increasing RCN concentration such that protein phosphatase activity is stimulatedby low concentrations of phospho-RCN andinhibitedby high concentrations of phospho- or dephospho-RCN. This prediction was verifiedexperimentally in yeast cells expressing Rcn1 or DSCR1/MCIP1 at different concentrations. Through the phosphorylation of RCNs, GSK-3 kinases can potentially contribute to a positive feedback loop involving calcineurin-dependent up-regulation of RCN expression. -
Epigenetic Modulations Induction Using DSCR1 Ectopic Expression in Breast Cancer Cells
Copyright © 2019 Tech Science Press MCB, vol.16, no.1, pp.41-58, 2019 Epigenetic Modulations Induction Using DSCR1 Ectopic Expression in Breast Cancer Cells Zahra Niki Boroujeni1, Atefeh Shirkavand1 and Seyed Ahmad Aleyasin1, * Abstract: Today, prognosis, diagnosis and treatment of cancers are progressing with non-invasive methods, including investigation and modification of the DNA methylation profile in cancer cells. One of the effective factors in regulating gene expression in mammals is DNA methylation. Methylation alterations of genes by external factors can change the expression of genes and inhibit the cancer. In the present study, we investigated the effect of Down syndrome critical region 1 gene (DSCR1) ectopic expression on the methylation status of the BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines. The effect of DSCR1 ectopic expression on cell viability in MCF7, MDA-MB-468, MDA-MB-231 and MCF10A cell lines was evaluated using MTT assay after the cells treated by lentivirus vectors harboring DSCR1 for 72 hours. Methylation status of BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines was assessed by Restriction Enzyme PCR (REP) method. Also, methylation changes of these genes in breast cancer cell lines after treatment by lentivirus vectors harboring DSCR1 for 7 days were analyzed by REP method. To confirm the effect of DSCR1 on methylation of genes, Real-time PCR was performed. The MTT assay results indicated that DSCR1 ectopic expression reduced cell viability in all three human breast cancer cell lines. Our results showed that DSCR1 ectopic expression after 6 days reversed the hypomethylation status of the BCL- XL, ITGA6, TCF3, VIM and CXCR4 genes and hypermethylation of RASSF1A and DOK7 genes. -
Human RCAN3 Gene Expression and Cell Growth in Endothelial Cells
913-918.qxd 19/10/2010 09:34 Ì ™ÂÏ›‰·913 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 26: 913-918, 2010 913 Human RCAN3 gene expression and cell growth in endothelial cells SILVIA CANAIDER1, MARINA VETTRAINO1, LUCY V. NORLING2, ENZO SPISNI3, FEDERICA FACCHIN1, DIANNE COOPER2 and MAURO PERRETTI2 1Department of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, Bologna, Italy; 2William Harvey Research Institute, Queen Mary University of London, Bart's and The London Medical School, Charterhouse Square, London, EC1M 6BQ, UK; 3Department of Experimental Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy Received May 28, 2010; Accepted July 20, 2010 DOI: 10.3892/ijmm_00000542 Abstract. Regulator of calcineurin 3 (RCAN3) belongs to the recent paper (5) will be used here. The human RCAN3 gene human RCAN gene family, which also includes RCAN1 and (1p36.11) encodes for a 241 amino acid predicted protein RCAN2. All three members interact with and inhibit calci- (27.5 kDa), is expressed in many human tissues (1,5) and is neurin. Based on this effect, several studies have demonstrated the most recent member of the human RCAN gene family, a role for RCAN1 and RCAN2 on inflammation, using human appearing only in vertebrates (6). RCAN-like proteins are umbilical vein endothelial cells (HUVECs) as a model. conserved from yeast to humans and share a highly conserved RCAN1 and 2 are strongly induced by vascular endothelial consensus motif (FLISPP motif) comprising the signature of growth factor (VEGF), inhibit cell proliferation and down- the family (1). RCAN3 has recently been demonstrated to regulate many pro-inflammatory and pro-angiogenic genes. -
WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US). -
Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
Downloaded from rnajournal.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3′ end and removal of the Lsm1 C-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites.