(Cameron-Martin-Girsanov Theorem) Radon-Nikodym Derivative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Black-Scholes Model
Chapter 5 Black-Scholes Model Copyright c 2008{2012 Hyeong In Choi, All rights reserved. 5.1 Modeling the Stock Price Process One of the basic building blocks of the Black-Scholes model is the stock price process. In particular, in the Black-Scholes world, the stock price process, denoted by St, is modeled as a geometric Brow- nian motion satisfying the following stochastic differential equation: dSt = St(µdt + σdWt); where µ and σ are constants called the drift and volatility, respec- tively. Also, σ is always assumed to be a positive constant. In order to see if such model is \reasonable," let us look at the price data of KOSPI 200 index. In particular Figure 5.1 depicts the KOSPI 200 index from January 2, 2001 till May 18, 2011. If it is reasonable to model it as a geometric Brownian motion, we must have ∆St ≈ µ∆t + σ∆Wt: St In particular if we let ∆t = h (so that ∆St = St+h − St and ∆Wt = Wt+h − Wt), the above approximate equality becomes St+h − St ≈ µh + σ(Wt+h − Wt): St 2 Since σ(Wt+h − Wt) ∼ N(0; σ h), the histogram of (St+h − St)p=St should resemble a normal distribution with standard deviation σ h. (It is called the h-day volatility.) To see it is indeed the case we have plotted the histograms for h = 1; 2; 3; 5; 7 (days) in Figures 5.2 up to 5.1. MODELING THE STOCK PRICE PROCESS 156 Figure 5.1: KOSPI 200 from 2001. -
Lecture 4: Risk Neutral Pricing 1 Part I: the Girsanov Theorem
SEEM 5670 { Advanced Models in Financial Engineering Professor: Nan Chen Oct. 17 &18, 2017 Lecture 4: Risk Neutral Pricing 1 Part I: The Girsanov Theorem 1.1 Change of Measure and Girsanov Theorem • Change of measure for a single random variable: Theorem 1. Let (Ω; F;P ) be a sample space and Z be an almost surely nonnegative random variable with E[Z] = 1. For A 2 F, define Z P~(A) = Z(!)dP (!): A Then P~ is a probability measure. Furthermore, if X is a nonnegative random variable, then E~[X] = E[XZ]: If Z is almost surely strictly positive, we also have Y E[Y ] = E~ : Z Definition 1. Let (Ω; F) be a sample space. Two probability measures P and P~ on (Ω; F) are said to be equivalent if P (A) = 0 , P~(A) = 0 for all such A. Theorem 2 (Radon-Nikodym). Let P and P~ be equivalent probability measures defined on (Ω; F). Then there exists an almost surely positive random variable Z such that E[Z] = 1 and Z P~(A) = Z(!)dP (!) A for A 2 F. We say Z is the Radon-Nikodym derivative of P~ with respect to P , and we write dP~ Z = : dP Example 1. Change of measure on Ω = [0; 1]. Example 2. Change of measure for normal random variables. • We can also perform change of measure for a whole process rather than for a single random variable. Suppose that there is a probability space (Ω; F) and a filtration fFt; 0 ≤ t ≤ T g. Suppose further that FT -measurable Z is an almost surely positive random variable satisfying E[Z] = 1. -
Risk Neutral Measures
We will denote expectations and conditional expectations with respect to the new measure by E˜. That is, given a random variable X, Z E˜X = EZ(T )X = Z(T )X dP . CHAPTER 4 Also, given a σ-algebra F, E˜(X | F) is the unique F-measurable random variable such that Risk Neutral Measures Z Z (1.2) E˜(X | F) dP˜ = X dP˜ , F F Our aim in this section is to show how risk neutral measures can be used to holds for all F measurable events F . Of course, equation (1.2) is equivalent to price derivative securities. The key advantage is that under a risk neutral measure requiring the discounted hedging portfolio becomes a martingale. Thus the price of any Z Z 0 ˜ ˜ derivative security can be computed by conditioning the payoff at maturity. We will (1.2 ) Z(T )E(X | F) dP = Z(T )X dP , F F use this to provide an elegant derivation of the Black-Scholes formula, and discuss for all F measurable events F . the fundamental theorems of asset pricing. The main goal of this section is to prove the Girsanov theorem. 1. The Girsanov Theorem. Theorem 1.6 (Cameron, Martin, Girsanov). Let b(t) = (b1(t), b2(t), . , bd(t)) be a d-dimensional adapted process, W be a d-dimensional Brownian motion, and ˜ Definition 1.1. Two probability measures P and P are said to be equivalent define if for every event A, P (A) = 0 if and only if P˜(A) = 0. Z t W˜ (t) = W (t) + b(s) ds . -
The Girsanov Theorem Without (So Much) Stochastic Analysis Antoine Lejay
The Girsanov theorem without (so much) stochastic analysis Antoine Lejay To cite this version: Antoine Lejay. The Girsanov theorem without (so much) stochastic analysis. 2017. hal-01498129v1 HAL Id: hal-01498129 https://hal.inria.fr/hal-01498129v1 Preprint submitted on 29 Mar 2017 (v1), last revised 22 Sep 2018 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Girsanov theorem without (so much) stochastic analysis Antoine Lejay March 29, 2017 Abstract In this pedagogical note, we construct the semi-group associated to a stochastic differential equation with a constant diffusion and a Lipschitz drift by composing over small times the semi-groups generated respectively by the Brownian motion and the drift part. Similarly to the interpreta- tion of the Feynman-Kac formula through the Trotter-Kato-Lie formula in which the exponential term appears naturally, we construct by doing so an approximation of the exponential weight of the Girsanov theorem. As this approach only relies on the basic properties of the Gaussian distribution, it provides an alternative explanation of the form of the Girsanov weights without referring to a change of measure nor on stochastic calculus. -
Measure, Integral and Probability
Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Comparison of Option Pricing Between ARMA-GARCH and GARCH-M Models
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Western Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-22-2013 12:00 AM Comparison of option pricing between ARMA-GARCH and GARCH-M models Yi Xi The University of Western Ontario Supervisor Dr. Reginald J. Kulperger The University of Western Ontario Graduate Program in Statistics and Actuarial Sciences A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Yi Xi 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Statistics and Probability Commons Recommended Citation Xi, Yi, "Comparison of option pricing between ARMA-GARCH and GARCH-M models" (2013). Electronic Thesis and Dissertation Repository. 1215. https://ir.lib.uwo.ca/etd/1215 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. COMPARISON OF OPTION PRICING BETWEEN ARMA-GARCH AND GARCH-M MODELS (Thesis format: Monograph) by Yi Xi Graduate Program in Statistics and Actuarial Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada ⃝c Yi Xi 2013 Abstract Option pricing is a major area in financial modeling. Option pricing is sometimes based on normal GARCH models. Normal GARCH models fail to capture the skewness and the leptokurtosis in financial data. -
Equivalent and Absolutely Continuous Measure Changes for Jump-Diffusion
The Annals of Applied Probability 2005, Vol. 15, No. 3, 1713–1732 DOI: 10.1214/105051605000000197 c Institute of Mathematical Statistics, 2005 EQUIVALENT AND ABSOLUTELY CONTINUOUS MEASURE CHANGES FOR JUMP-DIFFUSION PROCESSES By Patrick Cheridito1, Damir Filipovic´ and Marc Yor Princeton University, University of Munich and Universit´e Pierre et Marie Curie, Paris VI We provide explicit sufficient conditions for absolute continuity and equivalence between the distributions of two jump-diffusion pro- cesses that can explode and be killed by a potential. 1. Introduction. The purpose of this paper is to give explicit, easy-to- check sufficient conditions for the distributions of two jump-diffusion pro- cesses to be equivalent or absolutely continuous. We consider jump-diffusions that can explode and be killed by a potential. These processes are, in general, not semimartingales. We characterize them by their infinitesimal generators. The structure of the paper is as follows. In Section 2 we introduce the notation and state the paper’s main result, which gives sufficient conditions for the distributions of two jump-diffusions to be equivalent or absolutely continuous. The conditions consist of local bounds on the transformation of one generator into the other one and the assumption that the martingale problem for the second generator has for all initial distributions a unique solution. The formulation of the main theorem involves two sequences of stopping times. Stopping times of the first sequence stop the process before it explodes. The second sequence consists of exit times of the process from regions in the state space where the transformation of the first generator into the second one can be controlled. -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
The Radon-Nikodym Theorem
The Radon-Nikodym Theorem Yongheng Zhang Theorem 1 (Johann Radon-Otton Nikodym). Let (X; B; µ) be a σ-finite measure space and let ν be a measure defined on B such that ν µ. Then there is a unique nonnegative measurable function f up to sets of µ-measure zero such that Z ν(E) = fdµ, E for every E 2 B. f is called the Radon-Nikodym derivative of ν with respect to µ and it is often dν denoted by [ dµ ]. The assumption that the measure µ is σ-finite is crucial in the theorem (but we don't have this requirement directly for ν). Consider the following two examples in which the µ's are not σ-finite. Example 1. Let (R; M; ν) be the Lebesgue measure space. Let µ be the counting measure on M. So µ is not σ-finite. For any E 2 M, if µ(E) = 0, then E = ; and hence ν(E) = 0. This shows ν µ. Do we have the associated Radon-Nikodym derivative? Never. Suppose we have it and call it R R f, then for each x 2 R, 0 = ν(fxg) = fxg fdµ = fxg fχfxgdµ = f(x)µ(fxg) = f(x). Hence, f = 0. R This means for every E 2 M, ν(E) = E 0dµ = 0, which contradicts that ν is the Lebesgue measure. Example 2. ν is still the same measure above but we let µ to be defined by µ(;) = 0 and µ(A) = 1 if A 6= ;. Clearly, µ is not σ-finite and ν µ. -
Optimal Importance Sampling for Diffusion Processes
U.U.D.M. Project Report 2019:38 Optimal Importance Sampling for Diffusion Processes Malvina Fröberg Examensarbete i matematik, 30 hp Handledare: Erik Ekström Examinator: Denis Gaidashev Juni 2019 Department of Mathematics Uppsala University Acknowledgements I would like to express my sincere gratitude to my supervisor, Professor Erik Ekström, for all his help and support. I am thankful for his encouragement and for introducing me to the topic, as well as for the hours spent guiding me. 1 Abstract Variance reduction techniques are used to increase the precision of estimates in numerical calculations and more specifically in Monte Carlo simulations. This thesis focuses on a particular variance reduction technique, namely importance sampling, and applies it to diffusion processes with applications within the field of financial mathematics. Importance sampling attempts to reduce variance by changing the probability measure. The Girsanov theorem is used when chang- ing measure for stochastic processes. However, a change of the probability measure gives a new drift coefficient for the underlying diffusion, which may lead to an increased computational cost. This issue is discussed and formu- lated as a stochastic optimal control problem and studied further by using the Hamilton-Jacobi-Bellman equation with a penalty term to account for compu- tational costs. The objective of this thesis is to examine whether there is an optimal change of measure or an optimal new drift for a diffusion process. This thesis provides examples of optimal measure changes in cases where the set of possible measure changes is restricted but not penalized, as well as examples for unrestricted measure changes but with penalization.