Decision-Making Model for Track System of High-Speed Rail Lines Rail High-Speed of System Track for Model Decision-Making
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Ballast Inspection Technology for the Prioritization, Planning and Management of Ballast Delivery and Placement Dr
Use of Ballast Inspection Technology for the Prioritization, Planning and Management of Ballast Delivery and Placement Dr. Allan M. Zarembski, PE, Hon. Mbr. AREMA, FASME Research Professor University of Delaware Mr. Gregory T. Grissom, PE Vice President Engineering, Georgetown Rail Equipment Company Mr. Todd L. Euston, PE Senior Engineer Inspection Technologies Georgetown Rail Equipment Company Abstract This paper presents the results of a study on the optimization of ballast placement planning, prioritization and management for railway ballast distribution. Specifically, this paper presents the requirements for and inputs necessary to more effectively manage the ballast placement process and take advantage of the new track inspection technologies that provide more accurate and reliable data about ballast condition and track profile. This is to include addressing such key issues as: Where and how much ballast should be placed; to include ballast at end of ties (shoulders), under ties, and in cribs. How much ballast should be placed; to include reference or required ballast profile based on vertical, lateral and longitudinal performance requirements A key portion of this study was the introduction of new inspection technologies now available to more accurately define the ballast requirements. This includes such newly introduced inspection technologies as LIDAR for measurement of the ballast profile, Ground Penetrating Radar inspection for ballast depth deficiency, and other related inspection technologies. This in turn allows for more accurate ballast deficit analysis and calculation to include the reference or “ideal” profile used to determine the ballast deficit and the calculation of the difference between the current profile and this reference profile, which includes vertical load distribution and lateral and longitudinal restraint requirements. -
Ballastless Track on High-Speed Lines a Guarantee for Travel Savety And
Ballastless track on high-speed lines A guarantee for travel savety and comfort Prologue High–speed rail travel, as a fast connection between high-density population areas and as an alternative to frequently-overloaded air connections with an uncertain future, is gaining increasingly in significance all over the world. In the face of growing traffic density, critical views of life-cycle costs and significantly increa- sed requirements of the availability of railway tracks, there is an increasing demand for track systems which have a long lifetime, low service and maintenance costs and which also guarantee tra- vel safety and comfort. Ballastless tracks (BLT) have numerous advantages over the tradi- tional ballasted track, because of markedly reduced maintenance costs, longer duration of use, improved precision of the running track and the resultant quiet vehicle running. High speed and ballast The nature of the route requirements is changing, as a result of an increase in travel speed or axle loads. The load transported creates inertial forces and the particular more-frequent faults ari- sing from the rolling process are increasing dramatically. Altered deformation mechanisms with dynamic stimulation can result in major grain shifts during piling-up of ballast, which result in con- siderable impairment of the ballasted track and are responsible for uneven creeping and track displacement in the ballast bed. In addition, the track ballast stones are sucked up by vehicles at very high speeds (flying ballast) and may damage them. De- spite the choice of harder types of stone for ballast in high-speed traffic, maintenance costs are considerably higher. -
Longitudinal Track-Ballast Resistance of Railroad Tracks Considering Four Different Types of Sleepers
Longitudinal Track-Ballast Resistance of Railroad Tracks Considering Four Different Types of Sleepers Rudney C. Queiroz São Paulo State University, Bauru (SP), Brazil Abstract This paper aims at studying the behavior of a railroad track concerning the action of longitudinal forces, targeting the determination of the track-ballast resistance, in a real scale standard track model. This research, was developed at the São Paulo State University, and consisted of a comparative study of track- ballast resistance for railroad tracks built with four different types of sleepers. The first set of sleepers was made of steel, the second one was made of wood, the third one of prestressed-concrete and the fourth one of two-block concrete. In order to carry out this research, four 1600 mm gauge models were built with two TR-68 rails, fastened to seven sleepers by means of elastic fasteners and base plates. The sleepers, all of the same type for each model, were embedded in 0.35 m thick ballast, which was supported by a layer of 30 cm thick compacted soil. The computerized data acquisition system allowed displacement and force values to be obtained in real time. By convention, the maximum longitudinal track-ballast resistance corresponds to a displacement of 15 mm. The prestressed-concrete sleeper setup showed the greatest longitudinal track-ballast resistance per sleeper. The second best performance was obtained by the two- block concrete sleeper setup, followed by the wooden and the steel sleeper setups. The force- displacement curves showed an exponential rise to a maximum shape. The displacement corresponding to the maximum track-ballast resistances were different for each kind of sleeper setup. -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS SCHOOL OF CIVIL ENGINEERING AND THE ENVIRONMENT TRACK BEHAVIOUR: THE IMPORTANCE OF THE SLEEPER TO BALLAST INTERFACE BY LOUIS LE PEN THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2008 ACKNOWLEDGMENTS I would like to sincerely thank Professor William Powrie and Dr Daren Bowness for the opportunity given to me to carry out this research. I'd also like to thank the Engineering and Physical Sciences Research Council for the funding which made this research possible. Dr Daren Bowness worked very closely with me in the first year of my research and helped me begin to develop some of the skills required in the academic research community. Daren also provided me with some of the key references in this report, he is sadly missed. -
Innovations in Railway Track
INNOVATIONS IN RAILWAY TRACK Coenraad Esveld Professor of Railway Engineering, TU Delft This paper describes innovations in railway track structures. Special attention is devoted to alterna- tives for ballasted track, with emphasis on low-maintenance solutions, together with versatile high- speed track and heavy haul track for the 21st century. P.O. Box 5048 NL-2600 GA Delft The Netherlands Tel: +31 418 516369 Fax: +31 418 516372 Email: [email protected] Faculty of Civil Engineering, Section of Roads & Railways TABLE OF CONTENTS 1. Introduction........................................................................................................................................1 2. ballasted track ...................................................................................................................................1 3. reinforcing layers...............................................................................................................................2 4. ballastless track.................................................................................................................................2 5. use of ballastless track......................................................................................................................3 6. track resilience ..................................................................................................................................6 7. Critical train speeds...........................................................................................................................6 -
Special Specification 5104 Ballasted Track Construction
5104 Special Specification 5104 Ballasted Track Construction 1. DESCRIPTION This Item will govern for the construction of ballasted track on constructed trackbed. Ballasted track construction includes, but is not limited to, placing ballast, distributing and lining ties, installing and field welding running rail, installing jointed rail, installing turnouts and switches, rehabilitating existing ties and rail, raising and lining track, installing vehicular grade crossings, and other incidentals as specified herein. Track on ballasted and open deck bridges is also included. 2. MATERIALS 2.1. General. Use new material conforming to this specification unless otherwise designated in the plans or as approved by the Engineer. New material must be free from defects, rust, or damage and conform to the requirements of AREMA standards and the most current version of the UP General Specifications and Project Special Provisions unless otherwise stated in the plans, these specifications, or as required by the Engineer. Provide new material in an unblemished condition, free from defects, rust, or damage. 2.2. Rail. 2.2.1. Use Type RE 136 lb. Standard Strength Continuous Welded Rail meeting the requirements of Union Pacific Standard Drawing 176500, “136 Lb. Rail Section” and conforming to the requirements of American Railway Engineering and Maintenance of Way Association (AREMA) Chapter 4 “Rail” and UP General Specifications Section 34 11 10 – Railroad Track Construction unless otherwise specified in the plans. Rail must be 136 RE head hardened rail unless otherwise specified in the plans. 2.2.2. All rail, excluding rail for industry leads, must be continuously shop welded and transported in 400 ft. -
Use of Geogrids in Railroad Beds and Ballast Construction
Use of Geogrid in Subgrade-Ballast System of Railroads Subjected to Cyclic Loading for Reducing Maintenance B. M. Das, Dean Emeritus California State University, Sacramento, USA ABSTRACT During the past twenty-five years biaxial geogrids have been used as reinforcement in the construction of railroad beds and ballasts to improve their performance and structural integrity. A review of several published field and large-scale laboratory test results relating to the reinforcing ability of geogrids is presented. Also included are a number of case histories from several countries where layer(s) of geogrid were used in ballast and sub-ballast layers and on soft subgrade to reduce track settlement and, hence, the frequency of maintenance. 1. INTRODUCTION A geogrid is defined as a polymeric (i.e., geosynthetic) material consisting of connected parallel sets of tensile ribs with apertures of sufficient size to allow strike-through of surrounding soil, stone, or other geotechnical material. Their primary functions are reinforcement and separation. Reinforcement refers to the mechanism(s) by which the engineering properties of the composite soil/aggregate are mechanically improved. Separation refers to the physical isolation of dissimilar materials — say, ballast and sub-ballast or sub-ballast and subgrade — such that they do not commingle. Netlon Ltd. of the United Kingdom was the first producer of geogrids. In 1982 the Tensar Corporation (presently Tensar International) introduced geogrids in the United States. Historically speaking, in the 1950’s Dr. Brian Mercer (1927-1998) developed the Netlon® process in which plastics are extruded into a net-like process in one stage. He founded Netlon Ltd. -
New Design Concepts for High-Speed Lines and the Limits of the Ballasted Track Escobar, Adrián Zamorano, Clara Isabel Jiménez, Pablo Lorenzo Escobar, Jorge
25 número 5 - junio - 2018. Pág 219 - 227 New design concepts for High-speed lines and the limits of the ballasted track Escobar, Adrián Zamorano, Clara Isabel Jiménez, Pablo Lorenzo Escobar, Jorge Technical University of Madrid1 Abstract The correct decision regarding to what type of track should be used in High-speed lines is one of the topics that has generated more discussion and controversy over the last few years. In addition, this decision is very influenced by the tradition, philosophy and design principles of the different countries. This fact is fundamentally due to the multitude of constraints and influencing factors that define as most appropriate, the use of a ballasted track against a ballastless track, or vice versa. However, the present research intends to look beyond and review the main High-speed projects of greater relevance and transcendence that are being or will be realized in the next years, around the world, to observe if some of the two typologies is presenting a greater implementation, and the main factors that are motivating this decision. In addition, the new conditions that are appearing in some countries will be analysed, related to the demand for greater performance of design speed and design life, as well as the influence that these new demands will have on the decisions related to the type of superstructure to be installed. Finally, a comparison of all these different design philosophies will be carried out, in relation to the Spanish High-speed model, in order to generate a brief discussion of the main differences and similarities found. -
C17 Land Disposal, Andover Station Yard, Hampshire Decision Notice
Les Waters Senior Manager, Licensing Railway Markets and Economics Telephone 020 7282 2106 E-mail: [email protected] Company Secretary Network Rail Infrastructure Limited 1 Eversholt Street London NW1 2DN 17 January 2020 Network licence Condition 17 (land disposal): Andover station yard, Hampshire Decision 1. On 3 October 2019, Network Rail gave notice of its intention to dispose of land at Andover station yard, Hampshire (“the land”), in accordance with Condition 17 of its network licence. The land is described in more detail in the notice (copy attached) and at Annex B. 2. We have considered the information supplied by Network Rail including the responses received from third parties consulted. For the purposes of Condition 17 of Network Rail’s network licence, ORR consents to the disposal of the land in accordance with the particulars set out in its notice. Reasons for decision 3. In considering this case, and with Network Rail’s agreement, we considered it appropriate, under Condition 17.5 of Network Rail’s network licence, to extend the deadline to 20 January 2020, to allow Network Rail sufficient time to address the points we raised below. i. We considered that the disposal was inconsistent with Network Rail’s freight site enhancements plan for Andover, as it would remove the area designated as a “Bufferstop Overrun Risk Zone” (shown in Annex B). Further, the proposed disposal could also reduce operational flexibility for passenger train through-running towards Basingstoke and beyond, and it was not clear whether this had been considered sufficiently. ii. We noted that Andover Town Council wished to see redevelopment north of Andover station, which would include the provision of direct pedestrian access to the station. -
Advances in Design Theories of High-Speed Railway Ballastless Tracks
Journal of Modern Transportation Volume 19, Number 3, September 2011, Page 154-162 Journal homepage: jmt.swjtu.edu.cn DOI: 10.1007/BF03325753 Advances in design theories of high-speed railway ballastless tracks Xueyi LIU*, Pingrui ZHAO, Feng DAI MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China Abstract: The design theories of the ballastless track in the world are reviewed in comparison with the innovative re- search achievements of high-speed railway ballastless track in China. The calculation methods and parameters concern- ing train load, thermal effect, and foundation deformation of high-speed railway ballastless track, together with the structural design methods are summarized. Finally, some suggestions on the future work are provided. Key words: high-speed railway; ballastless track; design theory © 2011 JMT. All rights reserved. 1. Introduction 2. Overview of ballastless track design theories tructure forms and design theories of ballastless S tracks vary across the world due to the different In the design of Japanese slab track, the train load effect development backgrounds. In Japan, the slab track was is a primary concern. Using the elastic design method, the typically laid on the solid foundation such as a bridge or security during the manufacturing, hoisting, and construct- tunnel at first, and then gradually developed to the soil ing of the slab track is maximized. As seriously damaged subgrade afterwards. It adopts the unit design that takes CA mortar at the slab corner and the slab warping caused into account the effect of train load. The German ballas- by temperature gradients emerged, the uneven support tless track was first laid on the soil subgrade and then on caused by warping is considered in the analysis [1]. -
High-Speed Railway Ballast Flight Mechanism
Construction and Building Materials 223 (2019) 629–642 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Review High-speed railway ballast flight mechanism analysis and risk management – A literature review ⇑ Guoqing Jing a, Dong Ding b, Xiang Liu c, a Civil Engineering School, Beijing Jiaotong University, Beijing 10044, China b Université de Technology de Compiègne, Laboratoire Roberval, Compiègne 60200, France c Department of Civil and Environmental Engineering, Rutgers University-New Brunswick, Piscataway 08854, United States highlights Review of studies about ballast flight mechanism and influence factors. Recommendations of ballast aggregates selection and ballast bed profile were provided. Sleeper design and polyurethane materials solutions were presented. The reliability risk assessment of ballast flight is described for HSR line management. article info abstract Article history: Ballast flight is a significant safety problem for high-speed ballasted tracks. In spite of the many relevant Received 16 March 2019 prior studies, a comprehensive review of the mechanism, recent developments, and critical issues with Received in revised form 19 June 2019 regards to ballast flight has remained missing. This paper, therefore, offers a general overview on the state Accepted 24 June 2019 of the art and practice in ballast flight risk management while encompassing the mechanism, influencing factors, analytical and engineering methods, risk mitigation strategies, etc. Herein, the problem of ballast flight is emphasized to be associated with the train speed, track response, ballast profile, and aggregate Keywords: physical characteristics. Experiments and dynamic analysis, and reliability risk assessment are high- High speed rail lighted as research methods commonly used to analyze the mechanism and influencing factors of ballast Ballast flight Risk management flight. -
A Special SCC Applied in High-Speed Rail of China
Construction and Building Materials 124 (2016) 167–176 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Sealed-space-filling SCC: A special SCC applied in high-speed rail of China ⇑ ⇑ Qiang Yuan a, , Guangcheng Long a, , Zanqun Liu a, Kunlin Ma a, Youjun Xie a, Dehua Deng a, Hai Huang a,b a School of Civil Engineering, National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha 410075, China b China Railway No. 4 Engineering Group CO. LTD, Hefei 230000, China highlights graphical abstract Seal-spaced-filling SCC (SSFSCC), a special SCC applied in high-speed rail, was introduced. The property requirements of SSFSCC and corresponding testing methods were elaborated. Raw material and mix proportioning of SSFSCC were presented. The construction technology of SSFSCC was addressed. article info abstract Article history: Sealed-space-filling self-compacting concrete (SSFSCC) is used in China Rail Track System (CRTS) III bal- Received 8 March 2016 lastless slab track of high-speed rail, which has been originally developed in China recently. In this track Received in revised form 27 June 2016 system, SSFSCC needs to be grouted into a flat, narrow, and sealed space (90 mm  2500 mm  Accepted 15 July 2016 5600 mm) which is enclosed by above prefabricated slab and bottom base plate. Good bonding between Available online 25 July 2016 SSFSCC filling layer and above prefabricated slab has to be secured since these two layers are required to work as a composite plate. SSFSCC presents some special characteristics in comparison with normal SCC.