Digit Problems

Total Page:16

File Type:pdf, Size:1020Kb

Digit Problems Chapter 1 Digit problems 1.1 When can you cancel illegitimately and yet get the correct answer? Let ab and bc be 2-digit numbers. When do such illegitimate cancella- tions as ab ab a bc = bc6 = c , 6 a allowing perhaps further simplifications of c ? 16 1 19 1 26 2 49 4 Answer. 64 = 4 , 95 = 5 , 65 = 5 , 98 = 8 . Solution. We may assume a, b, c not all equal. 10a+b a Suppose a, b, c are positive integers 9 such that 10b+c = c . (10a + b)c = a(10b + c), or (9a + b≤)c = 10ab. If any two of a, b, c are equal, then all three are equal. We shall therefore assume a, b, c all distinct. 9ac = b(10a c). If b is not divisible− by 3, then 9 divides 10a c = 9a +(a c). It follows that a = c, a case we need not consider. − − It remains to consider b =3, 6, 9. Rewriting (*) as (9a + b)c = 10ab. If c is divisible by 5, it must be 5, and we have 9a + b = 2ab. The only possibilities are (b, a)=(6, 2), (9, 1), giving distinct (a, b, c)=(1, 9, 5), (2, 6, 5). 102 Digit problems If c is not divisible by 5, then 9a + b is divisible by 5. The only possibilities of distinct (a, b) are (b, a) = (3, 8), (6, 1), (9, 4). Only the latter two yield (a, b, c)=(1, 6, 4), (4, 9, 8). Exercise 1. Find all possibilities of illegitimate cancellations of each of the fol- lowing types, leading to correct results, allowing perhaps further simplifications. abc c (a) b6 ad6 = d , 6 6 cab c (b) d6ba6 = d , 6 6 abc a (c) bcd6 6 = d . 6 6 2. Find all 4-digit numbers like 1805 = 192 5, which, when divided by the its last two digits, gives the square× of the number one more than its first two digits. 1.2 Repdigits 103 1.2 Repdigits A repdigit is a number whose decimal representation consists of a rep- etition of the same decimal digit. Let a be an integer between 0 and 9. For a positive integer n, the repdigit an consists of a string of n digits each equal to a. Thus, a a = (10n 1). n 9 − Exercise 1. Show that 16 1 19 1 26 2 49 4 n = , n = , n = , n = . 6n4 4 9n5 5 6n5 5 9n8 8 abn a Solution. More generally, we seek equalities of the form bnc = c for distinct integer digits a, b, c. Here, abn is digit a followed by n digits each equal to b. To avoid confusion, we shall indicate multiplication with the sign . The condition× (ab ) c =(b c) a is equivalent to n × n × b 10b 10na + (10n 1) c = (10n 1)+ c a, 9 − 9 − b 10b (10n 1)a + (10n 1) c = (10n 1) a. − 9 − 9 − 10n 1 Cancelling a common divisor 9− , we obtain (9a + b)c = 10ab, which ab a is the same condition for bc = c . 104 Digit problems Exercise 1. Prove that for 1 a, b 9, a b = b a . ≤ ≤ × n × n 2. Complete the following multiplication table of repdigits. 1n 2n 3n 4n 5n 6n 7n 8n 9n 1 1n 2n 3n 4n 5n 6n 7n 8n 9n 2 4n 6n 8n 1n0 13n 12 15n 14 17n 16 19n 18 − − − − 3 9n 13n 12 16n 15 19n 18 23n 11 26n 14 29n 17 − − − − − − 4 17n 16 2n0 26n 14 31n 208 35n 12 39n 16 − − − − − 5 27n 15 3n0 38n 15 4n0 49n 15 − − − 6 39n 16 46n 12 53n 228 59n 14 − − − − 7 54n 239 62n 216 69n 13 − − − 8 71n 204 79n 12 − − 9 98n 201 − 3. Verify 26n 2 . 6n5 = 5 Solution. It isenoughto verify 5 (26 )=2 (6 5). × n × n 5 (26 )= 5(20 +6 )=10 +3 0=13 0; × n n n n+1 n n 2 (6n5)= 2(6n0+5)=13n 120+10=13n0. × − 4. Simplify (1n)(10n 15). − Answer. (1n)(10n 15)=1n5n. − 1.3Sortednumberswithsortedsquares 105 1.3 Sorted numbers with sorted squares A number is sorted if its digits are nondecreasing from left to right. It is strongly sorted if its square is also sorted. It is known that the only strongly sorted integers are given in the table below. 1 1, 2, 3, 6, 12, 13, 15, 16, 38, 116, 117. • 16 7. • n 3 4. • n 3 5. • n 3 6 7. • m n (3 5 )2 =(10 3 + 5)2 n 1 · n =100 (3 )2 + 100 (3 )+25 · n · n =1n 108n 19102 +3n25 − − =1n 112n 1225 − − =1n2n+15. If x =3m6n7, then 3x = 10m 110n1, and it is easy to find its square. − 2 1m3m4n m+16m8n9, if n +1 m, (3m6n7) = − ≥ 1m3n+15m n 16n+18n9, if n +1 < m. ( − − More generally, the product of any two numbers of the form 3m6n7 is sorted. 1Problem 1234, Math. Mag., 59 (1986) 1, solution, 60 (1987)1. See also R. Blecksmith and C. Nicol, Monotonic numbers, Math. Mag., 66 (1993) 257–262. 106 Digit problems Exercise 1. Find all natural numbers whose square (in base 10) is represented by odd digits only. 2. Find the three 3-digit numbers each of which is equal to the product of the sum of its digits by the sum of the squares of its digits. Answer. 133, 315, 803. 3. Find all 4-digit numbers abcd such that √3 abcd = a + b + c + d. Answer. 4913 and 5832. Solution. There are only twelve 4-digit numbers which are cubes. For only two of them is the cube root equal to the sum of digits. n 10 11 12 13 14 17 16 17 18 19 20 21 n3 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 ∗∗∗ ∗∗∗ 4. Use each digit 1, 2, 3, 4, 5, 6, 7, 8, 9 exactly once to form prime numbers whose sum is smallest possible. What if we also include the digit 0? 5. There are exactly four 3-digit numbers each equal to the sum of the cubes of its own digits. Three of them are 153, 371, and 407. What is the remaining one? 6. Find all possibilities of a 3-digit number such that the three num- bers obtained by cyclic permutations of its digits are in arithmetic progression. Answer. 148, 185, 259, 296. Solution. Let abc be one such 3-digit numbers, with a smallest among the digits (which are not all equal). The other two numbers are bca and cab. Their sum abc + bca + cab = 111 (a + b + c). Therefore the middle number = 37 (a + b + c). × × We need therefore look for numbers of the form abc = 37 k with digit sum equal to s, and check if 37 s = bca or cab.× We may ignore multiples of 3 for k (giving repdigits× for 37 k). Note that 3k < 27. We need only consider k =4, 5, 7, 8. × 1.3Sortednumberswithsortedsquares 107 k 37 k s 37 s arithmetic progression 4 148× 13 13 37=481× 148, 481, 814 5 185 14 14 × 37=518 185, 518, 851 7 259 16 16 × 37=592 259, 592, 925 8 296 17 17 × 37=629 296, 629, 962 × 7. A 10-digit number is called pandigital if it contains each of the dig- its 0, 1,..., 9 exactly once. For example, 5643907128 is pandigi- tal. We regard a 9-digit number containing each of 1,..., 9 exactly once as pandigital (with 0 as the leftmost digit). In particular, the number A := 123456789 is pandigital. There are exactly 33 positive integers n for which nA are pandigital as shown below. n nA n nA n nA 1 123456789 2 246913578 4 493827156 5 617283945 7 864197523 8 987654312 10 1234567890 11 1358024679 13 1604938257 14 1728395046 16 1975308624 17 2098765413 20 2469135780 22 2716049358 23 2839506147 25 3086419725 26 3209876514 31 3827160459 32 3950617248 34 4197530826 35 4320987615 40 4938271560 41 5061728349 43 5308641927 44 5432098716 50 6172839450 52 6419753028 53 6543209817 61 7530864129 62 7654320918 70 8641975230 71 8765432019 80 9876543120 How would you characterize these values of n? 8. Find the smallest natural number N, such that, in the decimal nota- tion, N and 2N together use all the ten digits 0, 1,..., 9. Answer. N = 13485 and 2N = 26970. 108 Digit problems 1.4 Sums of squares of digits Given a number N = a1a2 an of n decimal digits, consider the “sum of digits” function ··· s(N)= a2 + a2 + + a2 . 1 2 ··· n For example s(11) = 2, s(56) = 41, s(85) = 89, s(99) = 162. For a positive integer N, consider the sequence S(N) : N, s(N), s2(N), ...,sk(N), ..., where sk(N) is obtained from N by k applications of s. Theorem 1.1. For every positive integer N, the sequence S(N) is either eventually constant at or periodic. The period has length 8 and form a cycle Exercise n 1 1. Prove by mathematical induction that 10 − > 81n for n 4. ≥ Solution. Clearly this is true for n =4: 103 > 81 4. n 1 · Assume 10 − > 81n. Then n n 1 10 = 10 10 − > 10 81n> 81(n + 1). · · n 1 Therefore, 10 − > 81n for n 4. ≥ 1.4 Sums of squares of digits 109 2. Prove that if N has 4 or more digits, then s(N) < N. Solution. If N has n digits, then n 1 (i) N 10 − , (ii) s(N≥) 81n.
Recommended publications
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • 2019 Practice Mathcounts Solutions
    2019 Practice Mathcounts Solutions Austin Math Circle January 20, 2019 1 Sprint Round Problem 1. What is the sum of the first five odd numbers and the first four even numbers? Solution. This is simply the sum of all the integers one through nine, which is 45 . Proposed by Jay Leeds. Problem 2. Shipping a box costs a flat rate of $5 plus $2 for every pound after the first five pounds. How much does it cost to ship a 18-pound box? Solution. An 18-pound box has 13 excess pounds, so our fee is 13 $2 $5 $31 . ¢ Å Æ Proposed by Jay Leeds. Problem 3. In rectangle ABCD, AB 6, BC 8, and M is the midpoint of AB. What is the area of triangle Æ Æ CDM? Solution. We see that this triangle has base six and height eight, so its area is 6 8/2 24 . ¢ Æ Proposed by Jay Leeds. Problem 4. Creed flips three coins. What is the probability that he flips heads at least once? Express your answer as a common fraction. 3 Solution. There is a ¡ 1 ¢ 1 chance that Creed flips no heads, so the probability that he flips at least once heads 2 Æ 8 7 is 1 1 . ¡ 8 Æ 8 Proposed by Jay Leeds. Problem 5. Compute the median of the following five numbers: A 43 , B 4.5, C 23 , D 22, and E 4.9. Æ 9 Æ Æ 5 Æ Æ Write A, B, C, D, or E as your answer. Solution. We can easily sort 22 4, 4.5, and 4.9.
    [Show full text]
  • Conjecture of Twin Primes (Still Unsolved Problem in Number Theory) an Expository Essay
    Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 229 { 252 CONJECTURE OF TWIN PRIMES (STILL UNSOLVED PROBLEM IN NUMBER THEORY) AN EXPOSITORY ESSAY Hayat Rezgui Abstract. The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers) called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900) which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover. Petronas towers (Twin towers) Kuala Lumpur, Malaysia 2010 Mathematics Subject Classification: 11A41; 97Fxx; 11Yxx. Keywords: Twin primes; Brun's constant; Zhang's discovery; Polymath project. ****************************************************************************** http://www.utgjiu.ro/math/sma 230 H. Rezgui Contents 1 Introduction 230 2 History and some interesting deep results 231 2.1 Yitang Zhang's discovery (April 17, 2013)............... 236 2.2 "Polymath project"........................... 236 2.2.1 Computational successes (June 4, July 27, 2013)....... 237 2.2.2 Spectacular progress (November 19, 2013)........... 237 3 Some of largest (titanic & gigantic) known twin primes 238 4 Properties 240 5 First twin primes less than 3002 241 6 Rarefaction of twin prime numbers 244 7 Conclusion 246 1 Introduction The prime numbers's study is the foundation and basic part of the oldest branches of mathematics so called "Arithmetic" which supposes the establishment of theorems.
    [Show full text]
  • Solutions and Investigations
    UKMT UKMT UKMT Junior Mathematical Challenge Thursday 30th April 2015 Organised by the United Kingdom Mathematics Trust supported by Solutions and investigations These solutions augment the printed solutions that we send to schools. For convenience, the solutions sent to schools are confined to two sides of A4 paper and therefore in many casesare rather short. The solutions given here have been extended. In some cases we give alternative solutions, and we have included some exercises for further investigation. We welcome comments on these solutions. Please send them to [email protected]. The Junior Mathematical Challenge (JMC) is a multiple-choice paper. For each question, you are presented with five options, of which just one is correct. It follows that often you canfindthe correct answers by working backwards from the given alternatives, or by showing that four of them are not correct. This can be a sensible thing to do in the context of the JMC. However, this does not provide a full mathematical explanation that would be acceptable if you were just given the question without any alternative answers. So for each question we have included a complete solution which does not use the fact that one of the given alternatives is correct. Thus we have aimed to give full solutions with all steps explained. We therefore hope that these solutions can be used as a model for the type of written solution that is expected when presenting a complete solution to a mathematical problem (for example, in the Junior Mathematical Olympiad and similar competitions). These solutions may be used freely within your school or college.
    [Show full text]
  • Sequences of Numbers Obtained by Digit and Iterative Digit Sums of Sophie Germain Primes and Its Variants
    Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 2 (2016), pp. 1473-1480 © Research India Publications http://www.ripublication.com Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants 1Sheila A. Bishop, *1Hilary I. Okagbue, 2Muminu O. Adamu and 3Funminiyi A. Olajide 1Department of Mathematics, Covenant University, Canaanland, Ota, Nigeria. 2Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria. 3Department of Computer and Information Sciences, Covenant University, Canaanland, Ota, Nigeria. Abstract Sequences were generated by the digit and iterative digit sums of Sophie Germain and Safe primes and their variants. The results of the digit and iterative digit sum of Sophie Germain and Safe primes were almost the same. The same applied to the square and cube of the respective primes. Also, the results of the digit and iterative digit sum of primes that are not Sophie Germain are the same with the primes that are notSafe. The results of the digit and iterative digit sum of prime that are either Sophie Germain or Safe are like the combination of the results of the respective primes when considered separately. Keywords: Sophie Germain prime, Safe prime, digit sum, iterative digit sum. Introduction In number theory, many types of primes exist; one of such is the Sophie Germain prime. A prime number p is said to be a Sophie Germain prime if 21p is also prime. A prime number qp21 is known as a safe prime. Sophie Germain prime were named after the famous French mathematician, physicist and philosopher Sophie Germain (1776-1831).
    [Show full text]
  • Problems Archives
    Cache update: 56 minutes Problems Archives The problems archives table shows problems 1 to 651. If you would like to tackle the 10 most recently published problems then go to Recent problems. Click the description/title of the problem to view details and submit your answer. ID Description / Title Solved By 1 Multiples of 3 and 5 834047 2 Even Fibonacci numbers 666765 3 Largest prime factor 476263 4 Largest palindrome product 422115 5 Smallest multiple 428955 6 Sum square difference 431629 7 10001st prime 368958 8 Largest product in a series 309633 9 Special Pythagorean triplet 313806 10 Summation of primes 287277 11 Largest product in a grid 207029 12 Highly divisible triangular number 194069 13 Large sum 199504 14 Longest Collatz sequence 199344 15 Lattice paths 164576 16 Power digit sum 201444 17 Number letter counts 133434 18 Maximum path sum I 127951 19 Counting Sundays 119066 20 Factorial digit sum 175533 21 Amicable numbers 128681 22 Names scores 118542 23 Non-abundant sums 91300 24 Lexicographic permutations 101261 25 1000-digit Fibonacci number 137312 26 Reciprocal cycles 73631 27 Quadratic primes 76722 28 Number spiral diagonals 96208 29 Distinct powers 92388 30 Digit fifth powers 96765 31 Coin sums 74310 32 Pandigital products 62296 33 Digit cancelling fractions 62955 34 Digit factorials 82985 35 Circular primes 74645 36 Double-base palindromes 78643 37 Truncatable primes 64627 38 Pandigital multiples 55119 39 Integer right triangles 64132 40 Champernowne's constant 70528 41 Pandigital prime 59723 42 Coded triangle numbers 65704 43 Sub-string divisibility 52160 44 Pentagon numbers 50757 45 Triangular, pentagonal, and hexagonal 62652 46 Goldbach's other conjecture 53607 47 Distinct primes factors 50539 48 Self powers 100136 49 Prime permutations 50577 50 Consecutive prime sum 54478 Cache update: 56 minutes Problems Archives The problems archives table shows problems 1 to 651.
    [Show full text]
  • From Vortex Mathematics to Smith Numbers: Demystifying Number Structures and Establishing Sieves Using Digital Root
    SCITECH Volume 15, Issue 3 RESEARCH ORGANISATION Published online: November 21, 2019| Journal of Progressive Research in Mathematics www.scitecresearch.com/journals From Vortex Mathematics to Smith Numbers: Demystifying Number Structures and Establishing Sieves Using Digital Root Iman C Chahine1 and Ahmad Morowah2 1College of Education, University of Massachusetts Lowell, MA 01854, USA 2Retired Mathematics Teacher, Beirut, Lebanon Corresponding author email: [email protected] Abstract: Proficiency in number structures depends on a continuous development and blending of intricate combinations of different types of numbers and its related characteristics. The purpose of this paper is to unpack the mechanisms and underlying notions that elucidate the potential process of number construction and its inherent structures. By employing the concept of digital root, we show how juxtaposed assumptions can play in delineating generalized models of number structures bridging the abstract, the numerical, and the physical worlds. While there are numerous proposed ways of constructing Smith numbers, developing a generalized algorithm could help provide a unified approach to generating number structures with inherent commonalities. In this paper, we devise a sieve for all Smith numbers as well as other related numbers. The sieve works on the principle of digital roots of both Sd(N), the sum of the digits of a number N and that of Sp(N), the sum of the digits of the extended prime divisors of N. Starting with Sp(N) = Sp(p.q.r…), where p,q,r,…, are the prime divisors whose product yields N and whose digital root (n) equals to that of Sd(N) thus Sd(N) = n + 9x; x є N.
    [Show full text]
  • Three Topics in Additive Prime Number Theory 3
    THREE TOPICS IN ADDITIVE PRIME NUMBER THEORY BEN GREEN Abstract. We discuss, in varying degrees of detail, three contemporary themes in prime number theory. Topic 1: the work of Goldston, Pintz and Yıldırım on short gaps between primes. Topic 2: the work of Mauduit and Rivat, establishing that 50% of the primes have odd digit sum in base 2. Topic 3: work of Tao and the author on linear equations in primes. Introduction. These notes are to accompany two lectures I am scheduled to give at the Current Developments in Mathematics conference at Harvard in November 2007. The title of those lectures is ‘A good new millennium for primes’, but I have chosen a rather drier title for these notes for two reasons. Firstly, the title of the lectures was unashamedly stolen (albeit with permission) from Andrew Granville’s entertaining article [16] of the same name. Secondly, and more seriously, I do not wish to claim that the topics chosen here represent a complete survey of developments in prime number theory since 2000 or even a selection of the most important ones. Indeed there are certainly omissions, such as the lack of any discussion of the polynomial-time primality test [2], the failure to even mention the recent work on primes in orbits by Bourgain, Gamburd and Sarnak, and many others. I propose to discuss the following three topics, in greatly varying degrees of depth. Suggestions for further reading will be provided. The three sections may be read inde- pendently although there are links between them. 1. Gaps between primes.
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • MOEMS Dive 2019
    Registered School: Leota Middle School (WOODINVILLE WA) Mathematical Olympiads November 12, 2019 For Elementary & Middle Schools Directions to Students: After all questions have been read by your PICO, you will have 30 minutes to complete this contest. You may not have a pen or pencil in your hand while the PICO reads the set of questions to the class. Calculators are not permitted. All work is to be done on the pages provided. No additional scrap paper is to be used. Answers must be placed in the corresponding boxes in the answer column. Name: ____________________________________________________ 1A Add: 8883 + 8838 + 8388 + 3888. 1B Five students entered a contest where they guessed how many marbles were in a jar. The person with the closest guess won the contest. • Ashley guessed 98 marbles. • Beth guessed 105 marbles. • Candace guessed 109 marbles. • Dennis guessed 113 marbles. • Edward guessed 115 marbles. Two of the students were 3 away from the actual number of marbles. Who won the contest? 1C Each letter in the following addition problem 5 A 9 represents a different digit and each of the same 5 A 9 letter represents the same digit. No letter can be + 5 A 9 either 5 or 9. PLAN Determine the sum PLAN in this cryptarithm. Copyright © 2019 by Mathematical Olympiads for Elementary and Middle Schools, Inc. All rights reserved. Registered School: Leota Middle School (WOODINVILLE WA) Name: _________________________________________________________________ 5 1D The fraction can be written as the decimal 0.384615384615… where the digits Answer Column 13 th 1A 384615 keep repeating. What is the 2019 digit to the right of the decimal point? – 1B Page may be folded along dotted line.
    [Show full text]
  • Resource Guide to the Arkansas Curriculum Framework for Students with Disabilities for Literacy, Mathematics, and Science
    Resource Guide to the Arkansas Curriculum Framework for Students with Disabilities for Literacy, Mathematics, and Science Summer 2006 Purpose and Process The Individuals with Disabilities Education Act and No Child Left Behind mandates that schools provide access to the general education curriculum for all students receiving special education services. In recognizing the challenge of providing opportunities for students with disabilities to access general education curriculum, it is the desire of the Arkansas Department of Education to assist educators with this process. The goal is to assist school personnel who serve children with disabilities in conceptualizing, planning, and implementing activities that are aligned to the Arkansas Curriculum Framework. The following document contains ideas for linking activities to the same literacy, mathematics, and science frameworks used for the general education curriculum. When selecting appropriate activities, decisions must be based on individual student needs and abilities. Collaboration with general education personnel will provide assistance in linking curriculum with the state framework. The Arkansas Alternate Portfolio Assessment must have alignment to the Arkansas Curriculum Frameworks for English Language Arts, Mathematics, and Science. The Alternate Portfolio Assessment for Students with Disabilities must align with the same content standards used by other students. The following are the strands used in each Content area. English Language Arts Curriculum Framework Oral and Visual Communications
    [Show full text]
  • Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences
    Generalized Partitions and New Ideas On Number Theory and Smarandache Sequences Editor’s Note This book arose out of a collection of papers written by Amarnath Murthy. The papers deal with mathematical ideas derived from the work of Florentin Smarandache, a man who seems to have no end of ideas. Most of the papers were published in Smarandache Notions Journal and there was a great deal of overlap. My intent in transforming the papers into a coherent book was to remove the duplications, organize the material based on topic and clean up some of the most obvious errors. However, I made no attempt to verify every statement, so the mathematical work is almost exclusively that of Murthy. I would also like to thank Tyler Brogla, who created the image that appears on the front cover. Charles Ashbacher Smarandache Repeatable Reciprocal Partition of Unity {2, 3, 10, 15} 1/2 + 1/3 + 1/10 + 1/15 = 1 Amarnath Murthy / Charles Ashbacher AMARNATH MURTHY S.E.(E&T) WELL LOGGING SERVICES OIL AND NATURAL GAS CORPORATION LTD CHANDKHEDA AHMEDABAD GUJARAT- 380005 INDIA CHARLES ASHBACHER MOUNT MERCY COLLEGE 1330 ELMHURST DRIVE NE CEDAR RAPIDS, IOWA 42402 USA GENERALIZED PARTITIONS AND SOME NEW IDEAS ON NUMBER THEORY AND SMARANDACHE SEQUENCES Hexis Phoenix 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/search/basic Peer Reviewers: 1) Eng.
    [Show full text]