A Parallel Virtual Machine for E Cient Scheme Compilation

Total Page:16

File Type:pdf, Size:1020Kb

A Parallel Virtual Machine for E Cient Scheme Compilation A Parallel Virtual Machine for Ecient Scheme Compilation Marc Feeley and James S Miller Brandeis University Waltham MA Architecture HPPA MIPS R Motorola K Abstract BBN Monarch For our purp oses it was imp ortant Programs compiled by Gambit our Scheme compiler achieve that retargetting the compiler b e simple and yet still p erformance as much as twice that of the fastest available yield a high p erformance system We rejected exist Scheme compilers Gambit is easily p orted while retaining ing compilerbased Scheme systems T with Orbit its high p erformance through the use of a simple virtual CScheme with Liar mainly b ecause of the di machine PVM PVM allows a wide variety of machine culty of retargetting and mo difying the compilation indep endent optimizations and it supp orts parallel computa strategy of these large systems tion based on the future construct PVM conveys highlevel High p erformance of output programs We are not information bidirectional l y b etween the machineindepen concerned with program development features For ex dent front end of the compiler and the machinedependent ample we do not allow the user to interrupt execution back end making it easy to implement a number of common of a program other than by ab orting it back end optimizations that are dicult to achieve for other virtual machines Supp ort for task creation and synchronization through PVM is similar to many real computer architectures and implici t data op erations p ossibly augmented by con has an option to eciently gather dynamic measurements of trol constructs The future construct provides these virtual machine usage These measurements can b e used in features compatibly with most other features of the p erformance prediction for p orts to other architectures as Scheme language and was therefore our initial fo cus well as design decisions related to prop osed optimizations We are also interested in exploring other parallel con and ob ject representations trol and data constructs Intro duction While the rst and second goals are somewhat at o dds with one another we b elieve that architectural comparisons Our primary interest is in ecient mechanisms for imple and architecture indep endent implementation techniques will menting futurebased symbolic computation on currently b e among the imp ortant results from our research We have available MIMD machines Having already done work in this therefore chosen to build a compiler based on an easily re area using the Scheme language augmented with the future targetted virtual machine even though it may result in less mechanism we are now extending our interpreter ecient compiled co de Fortunately our exp erience with based results into the realm of compiled Scheme co de For Gambit indicates that a well chosen virtual machine do es this purp ose we underto ok the implementation of a new not result in any noticeable p erformance p enalties Scheme compiler Gambit with the intention of creating a simple environment for exp eriments across a wide range PVM A Parallel Virtual Machine of hardware platforms and over a range of implementation techniques The ma jor design goals for Gambit from the In designing our virtual machine we tried to avoid a pair of outset were twin hazards that we have seen in other virtual machines used for compilation On the one hand there are virtual Co de generation for multiple target machines span machines like MITs scode or the co de ob jects of UMB ning b oth common CISC computers DEC Vax Mo Scheme that are so close to the source language that the torola MC and RISC computers HP Precision machine indep endent front end of the compiler is unable to express imp ortant optimizations in the virtual machines in This research was supp orted in part by the Op en Software Foun dation the HewlettPackard Corp oration and NSF equipment grant struction set This places a ma jor burden on the back end CDA Marc Feeley is on study leave from the Universitede which b ecomes resp onsible for analysis of the virtual ma Montreal chine co de a task very nearly as dicult as the original compilation task On the other hand there are virtual ma chines like Multilisps mcode or Scheme s byte co de that match neither the actual target machine nor the source language The result is either a complex back end that again attempts to recover data and control ow information from the virtual machine or a simple back end that pro duces Op erand Meaning p o or co de regn General purp ose register n Our Parallel Virtual Machine or PVM is intended to fall in b etween these kinds of machines We allow each back th stkn N slot of the current stack frame end to sp ecify a wide range of architectural details of the globname Global variable virtual machine includin g a description of primitive pro ce membase oset Indexed reference base is an dures available on the target machine and the number of op erand oset is a constant general purp ose registers As a result we can think of PVM objobject Constant as a set of virtual machines dep ending on the back end de lbln Program lab el scription that is used Each sp ecic virtual machine is close loc Parallelism supp ort see Section to its target machine yet the common abstraction hides the precise details from the front end PVM also remains close to the source language since its small instruction set closely Figure PVM Op erands matches the Scheme language itself PVM can b e viewed as a bidirectional communication medium b etween the front and back ends of the compiler The traditional role of a virtual machine of course is to con we leave other data structure accesses to the more general vey information from the front end to the back end PVM APPLY instruction As a result the ability to nest other however conveys information in the reverse direction as well op erands within mem is not actually in use although the back ends supp ort it The number of general registers Finally we note that all op erands can b e used as the The pro cedure calling convention source of values However values cannot b e stored into obj The format of closures lbl or op erands Enumeration and description of primitive pro cedures Machinespecic declarations Instructions for Sequential Computation We view this bidirection al communication as an imp or The PVM instruction set provides a small set of general tant comp onent of Gambits organization The communica instructions to eciently enco de the op eration of Scheme tion is supp orted by a language for describing implementa programs Like many compilers Gambit represents the pro tionlevel ob jects which is the basis of the PVM abstraction gram as a set of basic blo cks This representation is ap Four types of ob jects are manipulated using this language parent in the PVM co de Each basic blo ck is headed by a primitive pro cedures data ob jects stack frames and argu co de lab el followed by the co de for the data op erations in mentparameter blo cks Corresp onding to each of these is the blo ck and ends with a branch instruction Our current a means of reference the name of the primitive pro cedure instruction set for sequential computation consists of four slots within a data structure slots within a stack frame kinds of co de lab els three data manipulatin g instructions and argumentparameter number This particular level of and three branch instructions abstraction is convenient for b oth the front and back ends An imp ortant part of Gambits communication mecha For example b oth the back and front ends agree to discuss nism is the description of a set of pro cedures known as prim stack slots as p ositive integers in units of Scheme ob jects itives that are supp orted by the back end All primitives increasing as ob jects are pushed on the stack This is clearly are available through the general pro cedure call mechanism convenient for the front end and the back end can easily but some can also b e op en co ded by the APPLY and COND translate this into appropriate osets from a base register instructions The front end requires the back end to supply taking into account the number of bytes p er argument the a sp ecic minimal set of ab out primitive op erations direction of stack growth and the choice of stack discipli ne but the back end can in fact sp ecify any pro cedure as a on the target machine primitive The description of each primitive indicates its ar ity and strictness It also indicates whether it can b e op en Op erands co ded and whether it can return a placeholder as a value Thus list has unbounded arity is not strict in any argu PVM has seven classes of op erands as shown in Figure ment and never returns a placeholder while setcar has which naturally divide storage into disjoint areas registers arity two is strict in its rst argument but not its second current stack frame global variables heap storage constant and never returns a placeholder area and co de area This makes it easy to track values and PVMs handling of stack frames is unusual and is de with the exception of mem op erands removes the traditional scrib ed in Section The siz e parameter to the lab el and aliasing problem branch instructions is used to supp ort this mechanism and Neither the stack nor the heap p ointer is directly visible is describ ed in detail in that section Instead the stack is accessible by indexing o of a virtual The description of the sequential PMV instructions fol frame base p ointer that is mo died as part of the pro ce lows Figure shows a simple program iterative factorial dure call mechanism The heap is accessed implicitly when along
Recommended publications
  • Benchmarking Implementations of Functional Languages with ‘Pseudoknot’, a Float-Intensive Benchmark
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1996 Benchmarking implementations of functional languages with ‘Pseudoknot’, a float-intensive benchmark Hartel, Pieter H ; Feeley, Marc ; et al Abstract: Over 25 implementations of different functional languages are benchmarked using the same program, a floating-point intensive application taken from molecular biology. The principal aspects studied are compile time and execution time for the various implementations that were benchmarked. An important consideration is how the program can be modified and tuned to obtain maximal performance on each language implementation. With few exceptions, the compilers take a significant amount of time to compile this program, though most compilers were faster than the then current GNU C compiler (GCC version 2.5.8). Compilers that generate C or Lisp are often slower than those that generate native code directly: the cost of compiling the intermediate form is normally a large fraction of the total compilation time. There is no clear distinction between the runtime performance of eager and lazy implementations when appropriate annotations are used: lazy implementations have clearly come of age when it comes to implementing largely strict applications, such as the Pseudoknot program. The speed of C can be approached by some implementations, but to achieve this performance, special measures such as strictness annotations are required by non-strict implementations. The benchmark results have to be interpreted with care. Firstly, a benchmark based on a single program cannot cover a wide spectrum of ‘typical’ applications. Secondly, the compilers vary in the kind and level of optimisations offered, so the effort required to obtain an optimal version of the program is similarly varied.
    [Show full text]
  • A Scheme Foreign Function Interface to Javascript Based on an Infix
    A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension Marc-André Bélanger Marc Feeley Université de Montréal Université de Montréal Montréal, Québec, Canada Montréal, Québec, Canada [email protected] [email protected] ABSTRACT FFIs are notoriously implementation-dependent and code This paper presents a JavaScript Foreign Function Inter- using a given FFI is usually not portable. Consequently, face for a Scheme implementation hosted on JavaScript and the nature of FFI’s reflects a particular set of choices made supporting threads. In order to be as convenient as possible by the language’s implementers. This makes FFIs usually the foreign code is expressed using infix syntax, the type more difficult to learn than the base language, imposing conversions between Scheme and JavaScript are mostly im- implementation constraints to the programmer. In effect, plicit, and calls can both be done from Scheme to JavaScript proficiency in a particular FFI is often not a transferable and the other way around. Our approach takes advantage of skill. JavaScript’s dynamic nature and its support for asynchronous In general FFIs tightly couple the underlying low level functions. This allows concurrent activities to be expressed data representation to the higher level interface provided to in a direct style in Scheme using threads. The paper goes the programmer. This is especially true of FFIs for statically over the design and implementation of our approach in the typed languages such as C, where to construct the proper Gambit Scheme system. Examples are given to illustrate its interface code the FFI must know the type of all data passed use.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Tousimojarad, Ashkan (2016) GPRM: a High Performance Programming Framework for Manycore Processors. Phd Thesis
    Tousimojarad, Ashkan (2016) GPRM: a high performance programming framework for manycore processors. PhD thesis. http://theses.gla.ac.uk/7312/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] GPRM: A HIGH PERFORMANCE PROGRAMMING FRAMEWORK FOR MANYCORE PROCESSORS ASHKAN TOUSIMOJARAD SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy SCHOOL OF COMPUTING SCIENCE COLLEGE OF SCIENCE AND ENGINEERING UNIVERSITY OF GLASGOW NOVEMBER 2015 c ASHKAN TOUSIMOJARAD Abstract Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards in- creased parallelism. However, increased parallelism does not necessarily lead to better per- formance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general- purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM).
    [Show full text]
  • Part: an Asynchronous Parallel Abstraction for Speculative Pipeline Computations Kiko Fernandez-Reyes, Dave Clarke, Daniel Mccain
    ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Computations Kiko Fernandez-Reyes, Dave Clarke, Daniel Mccain To cite this version: Kiko Fernandez-Reyes, Dave Clarke, Daniel Mccain. ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Computations. 18th International Conference on Coordination Languages and Models (COORDINATION), Jun 2016, Heraklion, Greece. pp.101-120, 10.1007/978-3-319-39519- 7_7. hal-01631723 HAL Id: hal-01631723 https://hal.inria.fr/hal-01631723 Submitted on 9 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Computations? Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain Department of Information Technology Uppsala University, Uppsala, Sweden Abstract. The ubiquity of multicore computers has forced program- ming language designers to rethink how languages express parallelism and concurrency. This has resulted in new language constructs and new com- binations or revisions of existing constructs. In this line, we extended the programming languages Encore (actor-based), and Clojure (functional) with an asynchronous parallel abstraction called ParT, a data structure that can dually be seen as a collection of asynchronous values (integrat- ing with futures) or a handle to a parallel computation, plus a collection of combinators for manipulating the data structure.
    [Show full text]
  • The Butterfly(TM) Lisp System
    From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. The Butterfly TMLisp System Seth A. Steinberg Don Allen Laura B agnall Curtis Scott Bolt, Beranek and Newman, Inc. 10 Moulton Street Cambridge, MA 02238 ABSTRACT Under DARPA sponsorship, BBN is developing a parallel symbolic programming environment for the Butterfly, based This paper describes the Common Lisp system that BBN is on an extended version of the Common Lisp language. The developing for its ButterflyTM multiprocessor. The BBN implementation of Butterfly Lisp is derived from C Scheme, ButterflyTM is a shared memory multiprocessor which may written at MIT by members of the Scheme Team.4 The contain up to 256 processor nodes. The system provides a simplicity and power of Scheme make it particularly suitable shared heap, parallel garbage collector, and window based as a testbed for exploring the issues of parallel execution, as I/Osystem. The future constructis used to specify well as a good implementation language for Common Lisp. parallelism. The MIT Multilisp work of Professor Robert Halstead and THE BUTTERFLYTM LISP SYSTEM students has had a significant influence on our approach. For example, the future construct, Butterfly Lisp’s primary For several decades, driven by industrial, military and mechanism for obtaining concurrency, was devised and first experimental demands, numeric algorithms have required implemented by the Multilisp group. Our experience porting increasing quantities of computational power. Symbolic MultiLisp to the Butterfly illuminated many of the problems algorithms were laboratory curiosities; widespread demand of developing a Lisp system that runs efficiently on both for symbolic computing power lagged until recently.
    [Show full text]
  • Graph Reduction Without Pointers
    Graph Reduction Without Pointers TR89-045 December, 1989 William Daniel Partain The University of North Carolina at Chapel Hill Department of Computer Science ! I CB#3175, Sitterson Hall Chapel Hill, NC 27599-3175 UNC is an Equal Opportunity/Aflirmative Action Institution. Graph Reduction Without Pointers by William Daniel Partain A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill, 1989 Approved by: Jfn F. Prins, reader ~ ~<---(­ CJ)~ ~ ;=tfJ\ Donald F. Stanat, reader @1989 William D. Partain ALL RIGHTS RESERVED II WILLIAM DANIEL PARTAIN. Graph Reduction Without Pointers (Under the direction of Gyula A. Mag6.) Abstract Graph reduction is one way to overcome the exponential space blow-ups that simple normal-order evaluation of the lambda-calculus is likely to suf­ fer. The lambda-calculus underlies lazy functional programming languages, which offer hope for improved programmer productivity based on stronger mathematical underpinnings. Because functional languages seem well-suited to highly-parallel machine implementations, graph reduction is often chosen as the basis for these machines' designs. Inherent to graph reduction is a commonly-accessible store holding nodes referenced through "pointers," unique global identifiers; graph operations cannot guarantee that nodes directly connected in the graph will be in nearby store locations. This absence of locality is inimical to parallel computers, which prefer isolated pieces of hardware working on self-contained parts of a program. In this dissertation, I develop an alternate reduction system using "sus­ pensions" (delayed substitutions), with terms represented as trees and vari­ ables by their binding indices (de Bruijn numbers).
    [Show full text]
  • Parallelism in Lisp
    Parallelism in Lisp Michael van Biema Columbia University Dept. of Computer Science New York, N.Y. 10027 Tel: (212)280-2736 [email protected] three attempts are very interesting, in that two arc very similar Abstract in their approach but very different in the level of their constructs, and the third takes a very different approach. We This paper examines Lisp from the point of view of parallel do not study the so called "pure Lisp" approaches to computation. It attempts to identify exactly where the potential parallelizing Lisp since these are applicative approaches and for parallel execution really exists in LISP and what constructs do not present many of the more complex problems presented are useful in realizing that potential. Case studies of three by a Lisp with side-effects [4, 3]. attempts at augmenting Lisp with parallel constructs are examined and critiqued. The first two attempts concentrate on what we call control parallelism. Control parallelism is viewed here as a medium- or course-grained parallelism on the order of a function call in 1. Parallelism in Lisp Lisp or a procedure call in a traditional, procedure-oriented There are two main approaches to executing Lisp in parallel. language. A good example of this type of parallelism is the One is to use existing code and clever compiling methods to parallel evaluation of all the arguments to a function in Lisp, parallelize the execution of the code [9, 14, 11]. This or the remote procedure call or fork of a process in some approach is very attractive because it allows the use of already procedural language.
    [Show full text]
  • Parallel Combinators for the Encore Programming Language
    IT 16 007 Examensarbete 30 hp Februari 2016 Parallel Combinators for the Encore Programming Language Daniel Sean McCain Institutionen för informationsteknologi Department of Information Technology Abstract Parallel Combinators for the Encore Programming Language Daniel Sean McCain Teknisk- naturvetenskaplig fakultet UTH-enheten With the advent of the many-core architecture era, it will become increasingly important for Besöksadress: programmers to utilize all of the computational Ångströmlaboratoriet Lägerhyddsvägen 1 power provided by the hardware in order to Hus 4, Plan 0 improve the performance of their programs. Traditionally, programmers had to rely on low- Postadress: level, and possibly error-prone, constructs to Box 536 751 21 Uppsala ensure that parallel computations would be as efficient as possible. Since the parallel Telefon: programming paradigm is still a maturing 018 – 471 30 03 discipline, researchers have the opportunity to Telefax: explore innovative solutions to build tools and 018 – 471 30 00 languages that can easily exploit the computational cores in many-core architectures. Hemsida: http://www.teknat.uu.se/student Encore is an object-oriented programming language oriented to many-core computing and developed as part of the EU FP7 UpScale project. The inclusion of parallel combinators, a powerful high-level abstraction that provides implicit parallelism, into Encore would further help programmers parallelize their computations while minimizing errors. This thesis presents the theoretical framework that was built to provide Encore with parallel combinators, and includes the formalization of the core language and the implicit parallel tasks, as well as a proof of the soundness of this language extension and multiple suggestions to extend the core language.
    [Show full text]
  • Benchmarking Implementations of Functional Languages With
    Benchmarking Implementations of Functional Languages with Pseudoknot a FloatIntensive Benchmark Pieter H Hartel Marc Feeley Martin Alt Lennart Augustsson Peter Baumann Marcel Beemster Emmanuel Chailloux Christine H Flo o d Wolfgang Grieskamp John H G van Groningen Kevin Hammond Bogumil Hausman Melo dy Y Ivory Richard E Jones Jasp er Kamp erman Peter Lee Xavier Leroy Rafael D Lins Sandra Lo osemore Niklas Rojemo Manuel Serrano JeanPierre Talpin Jon Thackray Stephen Thomas Pum Walters Pierre Weis Peter Wentworth Abstract Over implementation s of dierent functional languages are b enchmarked using the same program a oating p ointintensive application taken from molecular biology The principal asp ects studied are compile time and Dept of Computer Systems Univ of Amsterdam Kruislaan SJ Amsterdam The Netherlands email pieterfwiuvanl Depart dinformatique et ro Univ de Montreal succursale centreville Montreal HC J Canada email feeleyiroumontrealca Informatik Universitat des Saarlandes Saarbruc ken Germany email altcsunisbde Dept of Computer Systems Chalmers Univ of Technology Goteb org Sweden email augustsscschalmersse Dept of Computer Science Univ of Zurich Winterthurerstr Zurich Switzerland email baumanniunizh ch Dept of Computer Systems Univ of Amsterdam Kruislaan SJ Amsterdam The Netherlands email b eemsterfwiuvanl LIENS URA du CNRS Ecole Normale Superieure rue dUlm PARIS Cedex France email EmmanuelChaillou xensfr Lab oratory for Computer Science MIT Technology Square Cambridge Massachusetts
    [Show full text]
  • Functional Programming 28 and 30 Sept
    Functional programming 28 and 30 Sept. 2020 ================================= Functional programming Functional languages such as Lisp/Scheme and ML/Haskell/OCaml/F# are an attempt to realize Church's lambda calculus in practical form as a programming language. The key idea: do everything by composing functions. No mutable state; no side effects. So how do you get anything done? --------------------------------- Recursion Takes the place of iteration. Some tasks are "naturally" recursive. Consider for example the function { a if a = b gcd(a, b) = { gcd(a-b, b) if a > b { gcd(a, b-a) if b > a (Euclid's algorithm). We might write this in C as int gcd(int a, int b) { /* assume a, b > 0 */ if (a == b) return a; else if (a > b) return gcd(a-b, b); else return gcd(a, b-a); } Other tasks we're used to thinking of as naturally iterative: typedef int (*int_func) (int); int summation(int_func f, int low, int high) { /* assume low <= high */ int total = 0; ___ int i; \ f(i) for (i = low; i <= high; i++) { /__ total += f(i); low ≤ i ≤ high } return total; } But there's nothing sacred about this "natural" intuition. Consider: int gcd(int a, int b) { /* assume a, b > 0 */ while (a != b) { if (a > b) a = a-b; else b = b-a; } return a; } typedef int (*int_func) (int); int summation(int_func f, int low, int high) { /* assume low <= high */ if (low == high) return f(low); else return f(low) + summation(f, low+1, high); } More significantly, the recursive solution doesn't have to be any more expensive than the iterative solution.
    [Show full text]
  • Part: an Asynchronous Parallel Abstraction for Speculative Pipeline Computations
    EasyChair Preprint № 43 ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Computations Kiko Fernandez-Reyes, Dave Clarke and Daniel S. McCain EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair. April 5, 2018 ParT: An Asynchronous Parallel Abstraction for Speculative Pipeline Computations? Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain Department of Information Technology Uppsala University, Uppsala, Sweden Abstract. The ubiquity of multicore computers has forced program- ming language designers to rethink how languages express parallelism and concurrency. This has resulted in new language constructs and new com- binations or revisions of existing constructs. In this line, we extended the programming languages Encore (actor-based), and Clojure (functional) with an asynchronous parallel abstraction called ParT, a data structure that can dually be seen as a collection of asynchronous values (integrat- ing with futures) or a handle to a parallel computation, plus a collection of combinators for manipulating the data structure. The combinators can express parallel pipelines and speculative parallelism. This paper presents a typed calculus capturing the essence of ParT, abstracting away from details of the Encore and Clojure programming languages. The calculus includes tasks, futures, and combinators similar to those of Orc but im- plemented in a non-blocking fashion. Furthermore, the calculus strongly mimics how ParT is implemented, and it can serve as the basis for adap- tation of ParT into different languages and for further extensions. 1 Introduction The ubiquity of multicore computers has forced programming language designers to rethink how languages express parallelism and concurrency. This has resulted in new language constructs that, for instance, increase the degree of asynchrony while exploiting parallelism.
    [Show full text]