Ground-Based 1U Cubesat Robotic Assembly Demonstration

Total Page:16

File Type:pdf, Size:1020Kb

Ground-Based 1U Cubesat Robotic Assembly Demonstration SSC20-WKI-05 Ground-Based 1U CubeSat Robotic Assembly Demonstration Ezinne Uzo-Okoro, Christian Haughwout, Emily Kiley, Mary Dahl, Kerri Cahoy Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge, MA 02139, USA (301) 370-6888 [email protected] ABSTRACT Key gaps limiting in-space assembly of small satellites are (1) the lack of standardization of electromechanical CubeSat components for compatibility with commercial robotic assembly hardware, and (2) testing and modifying commercial robotic assembly hardware suitable for small satellite assembly for space operation. Working toward gap (1), the lack of standardization of CubeSat components for compatibility with commercial robotic assembly hardware, we have developed a ground-based robotic assembly of a 1U CubeSat using modular components and Commercial-Off-The-Shelf (COTS) robot arms without humans-in-the-loop. Two 16 in x 7 in x 7 in dexterous robot arms, weighing 2 kg each, are shown to work together to grasp and assemble CubeSat components into a 1U CubeSat. Addressing gap (2) in this work, solutions for adapting power-efficient COTS robot arms to assemble highly-capable CubeSats are examined. Lessons learned on thermal and power considerations for overheated motors and positioning errors were also encountered and resolved. We find that COTS robot arms with sustained throughput and processing efficiency have the potential to be cost-effective for future space missions. The two robot arms assembled a 1U CubeSat prototype in less than eight minutes. INTRODUCTION (DARPA) Robotic Servicing of Today, as space becomes more accessible, Geosynchronous Satellites (RSGS) $400M there is a lack of affordable on-demand program aims to demonstrate that a robotic capability to address multiple government [1] servicing vehicle can perform safe, reliable, and commercial constellation needs for on- useful and efficient operations in or near the orbit servicing and assembly. The industry’s Geosynchronous Earth Orbit (GEO) first satellite life extension vehicle, Northrop environment. RSGS is using the custom- Grumman’s Mission Extension Vehicle-1 developed and large radiation-hardened Front- (MEV-1), completed its first docking to a client end Robotics Enabling Near-term satellite, Intelsat IS-901 on February 25, 2020. Demonstration (FREND) robot arm, which is a MEV-1 is designed to dock to geostationary 1.8 m arm from shoulder pitch to wrist pitch satellites whose fuel is nearly depleted and weighing 78 kg, with an additional 10 kg for does not make use of robot arms for its on-orbit electronics. servicing mission [2]. On-orbit robotic The need for low-cost, low-latency and agile assembly to date is costly, as evidenced by space infrastructure, which can reach strategic prior and current missions [3]. For example, the orbits such as GEO and Low Earth Orbit (LEO) Defense Advanced Research Projects Agency in addition to polar and International Space Ezinne Uzo-Okoro 1 34th Annual Small Satellite Conference Station (ISS) locations, could be realized using response time from a minimum of 30 days to a robotic assembly of modularized components less than 10 hours for a small satellite build and into CubeSats. A standardized modular deployment cycle. CubeSat and COTS-based robotic assembly This robotic-assembly based mission using could break the reliance on high-risk, high- propulsive “lockers” could help create a latency, high-cost legacy space hardware. resilient platform capable of rapidly Satellite cellularization [4][5][6][7] has made assembling and deploying scalable space incremental advances in the modularization of systems faster than NASA’s documented small satellite subsystems. However, this thesis minimum launch-on-demand response time (35 explores a new approach to CubeSat days) for the International Space Station (ISS) production based on the robotic assembly of crew rescue [8]. functional spacecraft components. There are four phases necessary to successfully Figure 1. Conceptual system design of the realize the mission concept. Phase 1 involves interior of the spacecraft locker. the ground-based robotic assembly of a CubeSat prototype using two dexterous arms We envision a new mission in which small and electromechanical components in a COTS robot arms are enclosed in free-flying laboratory environment and assessing different small spacecraft “lockers” of approximately 24 payload and propulsion options to optimize inches x 36 inches x 12.5 inches for the response time and sensing. This paper assembly of a new standard of small satellites. addresses the feasibility of Phase 1 and These mini-fridge-sized spacecraft “lockers” characterizes the systems engineering efforts with propulsion capability are intended to be required to develop in-space robotic assembly. orbit-agnostic in order to deploy on-demand Phase 2 involves the development and launch robot-assembled CubeSats where needed. The of a flight unit locker with robot arms and spacecraft locker houses two robotic arms, CubeSat modular components, including modular components including sensor and propulsion options for the CubeSats propulsion modules, and payloads for 1U to themselves and not just the spacecraft locker. 3U-sized CubeSats. The mission is expected to The spacecraft locker would be hosted at the deliver an unprecedented improvement in ISS Japanese Experiment Module Exposed Ezinne Uzo-Okoro 2 34th Annual Small Satellite Conference Facility (JEM-EF) [9][10][11], and house six Degrees of Freedom, and minimize on-orbit enough components to demonstrate the on- SmallSat assembly time by using the dexterous orbit assembly of five 1U CubeSats. The first robot arms while satisfying the given power prototype CubeSat would be a CubeSat consumption and weight requirements at a assembled on earth and deployed first in order given orbit. Thus, we employ multidisciplinary to test the deployment system. The four design optimization tools and methodologies remaining CubeSats - two with Radio Science focusing on the second key gap: testing and Experiments (RSE) and magnetometers, two modifying commercial robotic assembly with visible (VIS) sensors - will be robotically hardware suitable for small satellite assembly assembled on-orbit. The ISS Phase 2 in space. Given that the search parameters in technology demonstration is expected to prove the Inverse Kinematics task for a robot with the on-orbit assembly of modular many degrees of freedom are constant, the reconfigurable CubeSats, increase Technology Genetic Algorithm approach in combination Readiness Level (TRL), and assess response with the robot simulation is used. We also time quantitatively. describe the technology choices and redundancy levels of the different subsystems Organization in this optimal on-orbit assembly design. Following a state-of-the-art review of current robot arms in space, a feasibility study on the COTS Robot Arm Flight Heritage use of dexterous COTS robot arms in space is To date, most on-orbit assembly missions are analyzed. We summarize the study results not for small satellite on-orbit assembly, but toward feasible on-orbit CubeSat robotic instead are designed to support ISS assembly. experiments, exploration, and servicing (refuel Next we describe the lab prototype or repair existing satellites) missions demonstration of the robotic assembly of a 1U [15][16][17][18]. Previous missions include CubeSat by two dexterous COTS robot arms. the U.S. Defense Advanced Research Projects The assembly process uses two COTS robot Agency’s (DARPA) Orbital Express program arms to assemble modularized boards fastened [19], the DARPA Phoenix Program [20], and with magnets into a small satellite. The the Jet Propulsion Laboratory’s (JPL) Mars assembly steps use open-loop control and a Insight mission [21]. Robotic manipulators, Python software program. We show that the important for scientific experiments and the robotic arm assembly of modularized construction and maintenance of the ISS, have components is a viable option for a new class conducted on-orbit robotic assembly. of CubeSats. Examples include the Shuttle Remote Lastly, we provide a summary of the work and Manipulator System (SRMS) [22], also known introduce the next steps for space qualification as Canadarm, which is a 16.9-meter, seven of the system. degree of freedom (DOF) manipulator with a relocatable base; the National Space FEASIBILITY OF ROBOT ARMS IN Development Agency of Japan’s (NASDA) SPACE Japanese Experiment Module (JEM) Remote We review the current state-of-the-art of robot Manipulator System (JEMRMS), which is a arms in space. We assess the feasibility of the 9.91-meter, six DOF manipulator; and lastly, on-orbit assembly of small satellites using the European Robotic Arm (ERA), which is an Commercial-Off-The-Shelf (COTS) hardware 11-meter, seven DOF manipulator [23]. without humans-in-the-loop. We select low- cost robot arms, LewanSoul xArm Robots with Ezinne Uzo-Okoro 3 34th Annual Small Satellite Conference Table 1. Shows the gaps in select current on- servicing. The National Aeronautics and Space orbit assembly/servicing space missions Administration (NASA) Goddard Space Flight Center’s (GSFC) RESTORE-L servicing These manipulators employed very large mission [30], is also a robotic spacecraft robotic arms to deploy, maneuver, and capture equipped with the tools to rendezvous with, payloads. Hirzinger’s patent on a multisensory grasp, refuel, and relocate satellites to extend robot was tested aboard the Columbia shuttle, their lifespan. Lastly, NASA’s Dragonfly has which
Recommended publications
  • China's Space Robotic Arm Programs
    SITC Bulletin Analysis October 2013 China’s Space Robotic Arm Programs Kevin POLLPETER Deputy Director, Study of Innovation and Technology in China Project UC Institute on Global Conflict and Cooperation On July 20, 2013, China launched three satellites on a Long March 4C launch vehicle, ostensibly to test space debris observation and space robotic arm technologies. The three satellites, Chuangxin-3, Shiyan-7, and Shijian-15, drew the attention of satellite tracking enthusiasts when two of them began conducting orbital maneuvers with each other and an additional satellite that had been launched in 2005. The maneuvers began on August 1 and involved one satellite acting as the target and another satellite, most likely equipped with a robotic arm, grappling the target satellite. Exactly which two of the three satellites were involved in the maneuvers is unknown. Based on data from the U.S. Strategic Command’s Space-Track.org website, however, the largest satellite of the three, possibly the Shijian-15, fired its thrusters to move to the smallest of the three satel- lites, possibly the Chuangxin-3, which remained in a set orbit.1 The third satellite, possibly the Shiyan-7, does not appear to be involved in the test. These maneuvers continued until August 17 and resulted in the largest satellite closing in on and then away from the smallest satellite. On August 18, the largest satellite changed orbits and closed in on a completely separate satellite, the Shijian-7, that had been launched in 2005. These maneuvers have caused concern that the tests go beyond the stated objectives and are actually a cover for testing on-orbit anti-satellite (ASAT) technologies.
    [Show full text]
  • The Cassini Robot
    THE CASSINI–HUYGENS MISSION LESSON The Cassini Robot 5 Students begin by examining their prior 3–4 hrs notions of robots and then consider the characteristics and capabilities of a robot like the Cassini–Huygens spacecraft that would be sent into space to explore another planet. Students compare robotic functions to human body functions. The lesson MEETS NATIONAL SCIENCE EDUCATION prepares students to design, build, diagram, STANDARDS: and explain their own models of robots for Unifying Concepts and Processes space exploration in the Saturn system. A computer-generated rendering of Cassini–Huygens. • Form and function PREREQUISITE SKILLS BACKGROUND INFORMATION Science and Drawing and labeling diagrams Background for Lesson Discussion, page 122 Technology • Abilities of Assembling a spacecraft model Questions, page 127 technological Some familiarity with the Saturn Answers in Appendix 1, page 225 design system (see Lesson 1) 56–63: The Cassini–Huygens Mission 64–69: The Spacecraft 70–76: The Science Instruments 81–94: Launch and Navigation 95–101: Communications and Science Data EQUIPMENT, MATERIALS, AND TOOLS For the teacher Materials to reproduce Photocopier (for transparencies & copies) Figures 1–6 are provided at the end of Overhead projector this lesson. Chart paper (18" × 22") FIGURE TRANSPARENCY COPIES Markers; clear adhesive tape 1 1 per group 21 For each group of 3 to 4 students 3 1 1 per student Chart paper (18" × 22") 4 1 per group Markers 51 Scissors 6 (for teacher only) Clear adhesive tape or glue Various household objects: egg cartons, yogurt cartons, film canisters, wire, aluminum foil, construction paper 121 Saturn Educator Guide • Cassini Program website — http://www.jpl.nasa.gov/cassini/educatorguide • EG-1998-12-008-JPL Background for Lesson Discussion LESSON craft components and those of human body 5 The definition of a robot parts.
    [Show full text]
  • 2.1: What Is Robotics? a Robot Is a Programmable Mechanical Device
    2.1: What is Robotics? A robot is a programmable mechanical device that can perform tasks and interact with its environment, without the aid of human interaction. Robotics is the science and technology behind the design, manufacturing and application of robots. The word robot was coined by the Czech playwright Karel Capek in 1921. He wrote a play called “Rossum's Universal Robots” that was about a slave class of manufactured human-like servants and their struggle for freedom. The Czech word robota loosely means "compulsive servitude.” The word robotics was first used by the famous science fiction writer, Isaac Asimov, in 1941. 2.1: What is Robotics? Basic Components of a Robot The components of a robot are the body/frame, control system, manipulators, and drivetrain. Body/frame: The body or frame can be of any shape and size. Essentially, the body/frame provides the structure of the robot. Most people are comfortable with human-sized and shaped robots that they have seen in movies, but the majority of actual robots look nothing like humans. Typically, robots are designed more for function than appearance. Control System: The control system of a robot is equivalent to the central nervous system of a human. It coordinates and controls all aspects of the robot. Sensors provide feedback based on the robot’s surroundings, which is then sent to the Central Processing Unit (CPU). The CPU filters this information through the robot’s programming and makes decisions based on logic. The same can be done with a variety of inputs or human commands.
    [Show full text]
  • SPHERES Interact - Human-Machine Interaction Aboard the International Space Station
    SPHERES Interact - Human-Machine Interaction aboard the International Space Station Enrico Stoll Steffen Jaekel Jacob Katz Alvar Saenz-Otero Space Systems Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge Massachusetts, 02139-4307, USA [email protected] [email protected] [email protected] [email protected] Renuganth Varatharajoo Department of Aerospace Engineering University Putra Malaysia 43400 Selangor, Malaysia [email protected] Abstract The deployment of space robots for servicing and maintenance operations, which are tele- operated from ground, is a valuable addition to existing autonomous systems since it will provide flexibility and robustness in mission operations. In this connection, not only robotic manipulators are of great use but also free-flying inspector satellites supporting the oper- ations through additional feedback to the ground operator. The manual control of such an inspector satellite at a remote location is challenging since the navigation in three- dimensional space is unfamiliar and large time delays can occur in the communication chan- nel. This paper shows a series of robotic experiments, in which satellites are controlled by astronauts aboard the International Space Station (ISS). The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) were utilized to study several aspects of a remotely controlled inspector satellite. The focus in this case study is to investigate different approaches to human-spacecraft interaction with varying levels of autonomy under zero-gravity conditions. 1 Introduction Human-machine interaction is a wide spread research topic on Earth since there are many terrestrial applica- tions, such as industrial assembly or rescue robots. Analogously, there are a number of possible applications in space such as maintenance, inspection and assembly amongst others.
    [Show full text]
  • Design and Construction of a Robotic Arm for Industrial Automation
    Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 05, May - 2017 Design and Construction of a Robotic Arm for Industrial Automation Md. Tasnim Rana*, Anupom Roy Department of Mechanical Engineering, Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna- Khulna University of Engineering & Technology, Khulna- 9203, BANGLADESH 9203, BANGLADESH Abstract - The main concentration of the work was to make a assembly. In some circumstances, close emulation of the cost efficient autonomous robotic arm in terms of industrial human hand is desired, as in robots designed to conduct bomb automation. It is a type of mechanical arm, usually disarmament and disposal. In case of firefighting or rescue programmable, with similar functions to a human arm; the arm operation where human life is in danger robotic arm can be may be a unit mechanism or may be a part of a more complex used as a rescue device. This can be functioned as required robotic process. The end effector or robotic hand can be designed to perform any desired task such as welding, gripping, and can do works risky for human being. In case of rapid spinning etc., depending on the application. For detective production the time limit for production will be shorten with investigations and bomb disposal it can be used as an essential the use of robotic arm. machine. In industry any kind of work which should be accurate and works continuously, normal programming algorithms and 2. BACKGROUND mechanical function can do the job perfectly .It can sense the co- At first robot was developed by Leo nartho the vence.
    [Show full text]
  • Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Design, Manufacturing and Analysis of Robotic Arm with SCARA Configuration Kaushik Phasale1, Praveen Kumar2, Akshay Raut3, Ravi Ranjan Singh4, Amit Nichat5 1,2,3,4Students, 5Assitant Proffesor, Deparatment of Mechanical Engineering, JSPM’s Bhivarabai Sawant Institute of Technology & Research, Wagholi, Pune, Maharasthra, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - This paper deals with the “Design, The use of robots in library is becoming more popular in Manufacturing and Analysis of Robotic Arm with SCARA recent years. The trend seems to continue as long as the Configuration”. In the modern world, robotics has become robotics technology meets diverse and challenging needs in popular, useful and has achieved great successes in several educational purpose. The prototype consists of robotic arm along with grippers capable of moving in the three axes and fields of humanity. Every industrialist cannot afford to an ATMEGA 8 microcontroller. Software such as AVR Studio transform his unit from manual to semi-automatic or fully is used for programming, PROTESUS is used for simulation automatic as automation is not that cheap in India. The basic and PROGISP is used for dumping the program. RFID is used objective of this project is to develop a versatile and low cost for identifying the books and it has two IR Sensors for robotic arm which can be utilized for Pick and Place detecting the path. This robot is about 4 kg in weight and it is operation. Here controlling of the robot has been done by capable of picking and placing a book of weight one kg.s.
    [Show full text]
  • Computer Vision Based Robotic Arm Controlled Using Interactive GUI
    Intelligent Automation & Soft Computing Tech Science Press DOI:10.32604/iasc.2021.015482 Article Computer Vision Based Robotic Arm Controlled Using Interactive GUI Muhatasim Intisar1, Mohammad Monirujjaman Khan1,*, Mohammad Rezaul Islam1 and Mehedi Masud2 1Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka-1229, Bangladesh 2Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia ÃCorresponding Author: Mohammad Monirujjaman Khan. Email: [email protected] Received: 24 November 2020; Accepted: 19 December 2020 Abstract: This paper presents the design and implementation of a robotic vision system operated using an interactive Graphical User Interface (GUI) application. As robotics continue to become a more integral part of the industrial complex, there is a need for automated systems that require minimal to no user training to operate. With this motivation in mind, the system is designed so that a beginner user can operate the device with very little instruction. The application allows users to determine their desired object, which will be picked up and placed by a robotic arm into the target location. The application allows users to filter objects based on color, shape, and size. The filtering along the three parameters is done by employing a Hue-Saturation-Value (HSV) mode color detection algorithm, shape detection algorithm, size determining algorithm. Once the target object is identi- fied, a centroid detection algorithm is employed to find the object’s center coor- dinates. An inverse kinematic algorithm is used to ascertain the robotic arm’sjoint positions for picking the object. The arm then goes through a set of preset posi- tions to pick up the object, place the object, and then return the arm to the initial position.
    [Show full text]
  • A Review of Motion Planning Algorithms for Robotic Arm Systems
    This is a repository copy of A Review of Motion Planning Algorithms for Robotic Arm Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168146/ Version: Accepted Version Proceedings Paper: Liu, Shuai and Liu, Pengcheng orcid.org/0000-0003-0677-4421 (Accepted: 2020) A Review of Motion Planning Algorithms for Robotic Arm Systems. In: 8th International Conference on Robot Intelligence Technology and Applications (proceedings). The 8th International Conference on Robot Intelligence Technology and Applications, 11-13 Dec 2020, Cardiff. IEEE , GBR . (In Press) Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Review of Motion Planning Algorithms for Robotic Arm Systems Shuai Liu[0000-0001-6939-494X] and Pengcheng Liu[0000-0003-0677-4421] Department of Computer Science, University of York, York YO10 5GH, United Kingdom [email protected] Abstract. Motion planning plays a vital role in the field of robotics.
    [Show full text]
  • Space Technology Mission Directorate
    Space Technology Mission Directorate Innovation and Opportunity Conference 2018 Therese Griebel, Deputy Associate Administrator for STMD Programs | 11.07.18 TECHNOLOGY DRIVES EXPLORATION sparking enabling exploration investing in innovation and discovery America embracing competition engaging the and public-private NASA Pre-decisional – Internal Use Only – Do brightest minds partnerships 2 Not Distribute Partnerships & Technology Transfer SBIR/STTR • Technology Transfer • Prizes and Challenges Early Stage Innovation • iTech • NASA Innovative Advanced Concepts • Space Tech Research Grants Technology Demonstrations • Center Innovation Fund/Early Mid TRL • Technology Demonstration Career Initiative Missions • Small Spacecraft High TRL Technology Technology Maturation • Flight Opportunities • Game Changing Low TRL Development 3 FY 2018 Key Accomplishments Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) Aboard ISS demonstrated fully autonomous X-ray navigation in space — a capability that could revolutionize NASA’s ability in the Small Spacecraft future to pilot robotic spacecraft to Two small spacecraft (Integrated the far reaches of the solar Solar Array and Reflect Antenna and system and beyond. Optical Communication and Sensor Demonstration) missions were successfully launched aboard Orbital ATK’s Cygnus spacecraft. Kilopower Testing successfully completed on 1 kW ground demonstration system- could be used for an Solar Electric affordable fission nuclear power In Space Robotics Propulsion system to enable long-duration
    [Show full text]
  • Autonomous Robotic Systems for Mars Exploration Dr. Andrew E
    Autonomous Robotic Systems for Mars Exploration Dr. Andrew E. Johnson Jet Propulsion Laboratory California Institute of Technology Robotic spacecraft that land on and rove over the surface of Mars must be designed to overcome many challenges due to the hostile and uncertain environment. Winds and dust buffet landers as they descend rapidly to the surface. Rocks, scarps, dunes and slopes must be avoided during landing and rover traverse. Temperature extremes, radiation, shock and vibration stress mechanical designs and computing must recover gracefully from hardware and software failures. The round-trip light time precludes direct tele-operation so all vehicle motion is executed autonomously on-board given high level commands from earth. Autonomous robotic systems are increasingly used to mitigate these challenges while also extending the capabilities of the spacecraft. The objective of robotic Mars missions is to advance scientific discovery. Science return is greater when there is geological diversity and stratigraphy near the landing site, but these create terrain that is risky for landing. To mitigate these risks autonomous robotic systems are being developed for safe landing in these hazardous terrains. Algorithms have been developed that estimate the pose of the lander relative to known landmarks and automatically detect and avoid landing hazards. These algorithms are being combined with sensors and high performance computing to create bolt-on systems for safe and pin-point landing. Landing is fully autonomous and failure is not recoverable, so these systems are designed to be self- checking and as simple as possible while also dealing with environmental factors like illumination variations, dust and terrain relief.
    [Show full text]
  • The Cassini-Huygens Mission Overview
    SpaceOps 2006 Conference AIAA 2006-5502 The Cassini-Huygens Mission Overview N. Vandermey and B. G. Paczkowski Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan’s atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini- Huygens to address these issues. I. The Mission Saturn has fascinated observers for over 300 years. The only planet whose rings were visible from Earth with primitive telescopes, it was not until the age of robotic spacecraft that questions about the Saturnian system’s composition could be answered.
    [Show full text]
  • Cassini-Huygens
    High Ambitions for an Outstanding Planetary Mission: Cassini-Huygens Composite image of Titan in ultraviolet and infrared wavelengths taken by Cassini’s imaging science subsystem on 26 October. Red and green colours show areas where atmospheric methane absorbs light and reveal a brighter (redder) northern hemisphere. Blue colours show the high atmosphere and detached hazes (Courtesy of JPL /Univ. of Arizona) Cassini-Huygens Jean-Pierre Lebreton1, Claudio Sollazzo2, Thierry Blancquaert13, Olivier Witasse1 and the Huygens Mission Team 1 ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands 2 ESA Directorate of Operations and Infrastructure, ESOC, Darmstadt, Germany 3 ESA Directorate of Technical and Quality Management, ESTEC, Noordwijk, The Netherlands Earl Maize, Dennis Matson, Robert Mitchell, Linda Spilker Jet Propulsion Laboratory (NASA/JPL), Pasadena, California Enrico Flamini Italian Space Agency (ASI), Rome, Italy Monica Talevi Science Programme Communication Service, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands assini-Huygens, named after the two celebrated scientists, is the joint NASA/ESA/ASI mission to Saturn Cand its giant moon Titan. It is designed to shed light on many of the unsolved mysteries arising from previous observations and to pursue the detailed exploration of the gas giants after Galileo’s successful mission at Jupiter. The exploration of the Saturnian planetary system, the most complex in our Solar System, will help us to make significant progress in our understanding
    [Show full text]