Atoms for Peace Organized by The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is War Necessary for Economic Growth?
Historically Speaking-Issues (merged papers) 09/26/06 IS WAR NECESSARY FOR ECONOMIC GROWTH? VERNON W. RUTTAN UNIVERSITY OF MINNESOTA CLEMONS LECTURE SAINT JOHNS UNIVERSITY COLLEGEVILLE, MINNESOTA OCTOBER 9, 2006 1 OUTLINE PREFACE 3 INTRODUCTION 4 SIX GENERAL PURPOSE TECHNOLOGIES 5 The Aircraft Industry 6 Nuclear Power 7 The Computer Industry 9 The Semiconductor Industry 11 The Internet 13 The Space Industries 15 TECHNOLOGICAL MATURITY 17 IS WAR NECESSARY? 20 Changes in Military Doctrine 20 Private Sector Entrepreneurship 23 Public Commercial Technology Development 24 ANTICIPATING TECHNOLOGICAL FUTURES 25 PERSPECTIVES 28 SELECTED REFERENCES 32 2 PREFACE In a book published in 2001, Technology, Growth and Development: An Induced Innovation Perspective, I discussed several examples but did not give particular attention to the role of military and defense related research, development and procurement as a source of commercial technology development. A major generalization from that work was that government had played an important role in the development of almost every general purpose technology in which the United States was internationally competitive. Preparation for several speaking engagements following the publication of the book led to a reexamination of what I had written. It became clear to me that defense and defense related institutions had played a predominant role in the development of many of the general purpose technologies that I had discussed. The role of military and defense related research, development and procurement was sitting there in plain sight. But I was unable or unwilling to recognize it! It was with considerable reluctance that I decided to undertake the preparation of the book I discuss in this paper, Is War Necessary for Economic Growth? Military Procurement and Technology Development. -
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado by Peter W
Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado By Peter W. Lipman Pamphlet to accompany Geologic Investigations Series I–2799 dacite Ceobolla Creek Tuff Nelson Mountain Tuff, rhyolite Rat Creek Tuff, dacite Cebolla Creek Tuff Rat Creek Tuff, rhyolite Wheeler Geologic Monument (Half Moon Pass quadrangle) provides exceptional exposures of three outflow tuff sheets erupted from the San Luis caldera complex. Lowest sheet is Rat Creek Tuff, which is nonwelded throughout but grades upward from light-tan rhyolite (~74% SiO2) into pale brown dacite (~66% SiO2) that contains sparse dark-brown andesitic scoria. Distinctive hornblende-rich middle Cebolla Creek Tuff contains basal surge beds, overlain by vitrophyre of uniform mafic dacite that becomes less welded upward. Uppermost Nelson Mountain Tuff consists of nonwelded to weakly welded, crystal-poor rhyolite, which grades upward to a densely welded caprock of crystal-rich dacite (~68% SiO2). White arrows show contacts between outflow units. 2006 U.S. Department of the Interior U.S. Geological Survey CONTENTS Geologic setting . 1 Volcanism . 1 Structure . 2 Methods of study . 3 Description of map units . 4 Surficial deposits . 4 Glacial deposits . 4 Postcaldera volcanic rocks . 4 Hinsdale Formation . 4 Los Pinos Formation . 5 Oligocene volcanic rocks . 5 Rocks of the Creede Caldera cycle . 5 Creede Formation . 5 Fisher Dacite . 5 Snowshoe Mountain Tuff . 6 Rocks of the San Luis caldera complex . 7 Rocks of the Nelson Mountain caldera cycle . 7 Rocks of the Cebolla Creek caldera cycle . 9 Rocks of the Rat Creek caldera cycle . 10 Lava flows premonitory(?) to San Luis caldera complex . .11 Rocks of the South River caldera cycle . -
Richard G. Hewlett and Jack M. Holl. Atoms
ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12. -
Geology of the Cebolla Quadrangle, Rio Arriba County, New Mexico
BULLETIN 92 Geology of the Cebolla Quadrangle Rio Arriba County, New Mexico by HUGH H. DONEY 1 9 6 8 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY STIRLING A. COLGATE, President STATE BUREAU OF MINES AND MINERAL RESOURCES FRANK E. KOTTLOWSKI, Acting Director THE REGENTS MEMBERS Ex OFFICIO The Honorable David F. Cargo ...................................... Governor of New Mexico Leonard DeLayo ................................................. Superintendent of Public Instruction APPOINTED MEMBERS William G. Abbott .........................................................................................Hobbs Henry S. Birdseye ............................................................................... Albuquerque Thomas M. Cramer ................................................................................... Carlsbad Steve S. Torres, Jr. ....................................................................................... Socorro Richard M. Zimmerly .................................................................................... Socorro For sale by the New Mexico Bureau of Mines and Mineral Resources Campus Station, Socorro, N. Mex. 87801—Price $3.00 Abstract The Cebolla quadrangle overlaps two physiographic provinces, the San Juan Basin and the Tusas Mountains. Westward-dipping Mesozoic rocks, Quaternary cinder cones and flow rock, and Quaternary gravel terraces occur in the Chama Basin of the San Juan -
Cost Analysis of Seawater Uranium Recovered by a Polymeric Adsorbent System
IAEA-CN-216 Abstact 180 Cost analysis of seawater uranium recovered by a polymeric adsorbent system E. Schneider, H. Lindner, D. Sachde, M. Flicker The University of Texas at Austin, USA E-mail address of main author: [email protected] In tandem with its adsorbent development and marine testing efforts, the United States Department of Energy, Office of Nuclear Energy, routinely updates and expands its cost analysis of technologies for extracting uranium from seawater. If informed by repeatable data from field tests, a rigorous cost analysis can convincingly establish seawater uranium as a “backstop” to conventional uranium resources. A backstop provides an essentially unlimited supply of an otherwise exhaustible resource. Its role is to remove the uncertainty around the long-term sustainability of the resource. The cost analysis ultimately aims to demonstrate a uranium production cost that is sustainable for the nuclear power industry, with no insurmountable technical or environmental roadblocks. It is also a tool for guiding further R&D, identifying inputs and performance factors where further development would offer the greatest reduction in costs and/or uncertainties. A life cycle discounted cash flow methodology is used to calculate the uranium production cost and its uncertainty from the costs of fundamental inputs including chemicals and materials, labor, equipment, energy carriers and facilities. The inputs themselves are defined by process flow models of the adsorbent fabrication and grafting, mooring at sea, recovery, and elution and purification steps in the seawater uranium recovery process. Pacific Northwest National Laboratory (PNNL) has carried out marine tests of the Oak Ridge National Laboratory amidoxime grafted polymer adsorbent in natural seawater. -
Sources, Effects and Risks of Ionizing Radiation
SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2016 Report to the General Assembly, with Scientific Annexes UNITED NATIONS New York, 2017 NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Seventy-first Session, Supplement No. 46 and corrigendum (A/71/46 and Corr.1). The report reproduced here includes the corrections of the corrigendum. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.17.IX.1 ISBN: 978-92-1-142316-7 eISBN: 978-92-1-060002-6 © United Nations, January 2017. All rights reserved, worldwide. This publication has not been formally edited. Information on uniform resource locators and links to Internet sites contained in the present publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. -
Variant28.Indd Copy
VARIANT 28 | SPRING 2007 | 31 The Friendly Atom NuclearSpin On February 15, Tony Blair’s plan to introduce a uranium resources amounted to about 3.6 million new generation of nuclear power stations suffered tonnes. These resources show a wide variation in ore a serious setback when the High Court ruled that grade and accessibility. ... Uranium ore is not an energy the consultation carried out by the government resource unless the ore grade is high enough. Below earlier was “misleading” and “seriously flawed”. grade 0.02% (U3O8 Uranium Oxide) more energy is Justice Sullivan’s ruling enjoins the government required to produce and exploit the uranium fuel than to canvass public opinion again, causing a likely can be generated from it. Falling ore grade leads to delay in the publication of the energy white rapidly rising CO2 emissions from the nuclear energy paper scheduled for March. The judgement cycle. Assuming world nuclear generating capacity is a significant victory for Greenpeace which, remains at 2005 levels, after about 2016 the mean describing it as a sham, had applied for a judicial grade of uranium ore will fall significantly from today’s review of the consultation process. levels, and even more so after 2034. After about 60 The landmark ruling closed a chapter that years the world nuclear power system will fall off the ‘The Future’s started on January 23, 2006 when the government ‘Energy Cliff’ – meaning that the nuclear system will Mirror’, Corneila officially launched the 12-week consultation consume as much energy as can be generated from the Hesse-Honegger, exercise on the UK’s energy needs, entitled: ‘Our uranium fuel. -
The Oratory of Dwight D. Eisenhower
The oratory of Dwight D. Eisenhower Book or Report Section Accepted Version Oliva, M. (2017) The oratory of Dwight D. Eisenhower. In: Crines, A. S. and Hatzisavvidou, S. (eds.) Republican orators from Eisenhower to Trump. Rhetoric, Politics and Society. Palgrave MacMillan, pp. 11-39. ISBN 9783319685441 doi: https://doi.org/10.1007/978-3-319-68545-8 Available at http://centaur.reading.ac.uk/69178/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1007/978-3-319-68545-8 Publisher: Palgrave MacMillan All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online THE ORATORY OF DWIGHT D. EISENHOWER Dr Mara Oliva Department of History University of Reading [email protected] word count: 9255 (including referencing) 1 On November 4, 1952, Republican Dwight D. Eisenhower became the 34th President of the United States with a landslide, thus ending the Democratic Party twenty years occupancy of the White House. He also carried his Party to a narrow control of both the House of Representatives and the Senate. His success, not the Party’s, was repeated in 1956. Even more impressive than Eisenhower’s two landslide victories was his ability to protect and maintain his popularity among the American people throughout the eight years of his presidency. -
Timeline of the Cold War
Timeline of the Cold War 1945 Defeat of Germany and Japan February 4-11: Yalta Conference meeting of FDR, Churchill, Stalin - the 'Big Three' Soviet Union has control of Eastern Europe. The Cold War Begins May 8: VE Day - Victory in Europe. Germany surrenders to the Red Army in Berlin July: Potsdam Conference - Germany was officially partitioned into four zones of occupation. August 6: The United States drops atomic bomb on Hiroshima (20 kiloton bomb 'Little Boy' kills 80,000) August 8: Russia declares war on Japan August 9: The United States drops atomic bomb on Nagasaki (22 kiloton 'Fat Man' kills 70,000) August 14 : Japanese surrender End of World War II August 15: Emperor surrender broadcast - VJ Day 1946 February 9: Stalin hostile speech - communism & capitalism were incompatible March 5 : "Sinews of Peace" Iron Curtain Speech by Winston Churchill - "an "iron curtain" has descended on Europe" March 10: Truman demands Russia leave Iran July 1: Operation Crossroads with Test Able was the first public demonstration of America's atomic arsenal July 25: America's Test Baker - underwater explosion 1947 Containment March 12 : Truman Doctrine - Truman declares active role in Greek Civil War June : Marshall Plan is announced setting a precedent for helping countries combat poverty, disease and malnutrition September 2: Rio Pact - U.S. meet 19 Latin American countries and created a security zone around the hemisphere 1948 Containment February 25 : Communist takeover in Czechoslovakia March 2: Truman's Loyalty Program created to catch Cold War -
Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model
PNNL-17793 Prepared for the U.S. Department of Energy Under Contract DE-AC05-76RL01830 Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model CF Brown W Um RJ Serne September 2008 PNNL-17793 Uranium Contamination in the 300 Area: Emergent Data and Their Impact on the Source Term Conceptual Model CF Brown W Um RJ Serne September 2008 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary Several characterization campaigns have been conducted by Pacific Northwest National Laboratory in the 300 Area over the last 10 years. The primary objectives of these efforts were to define inventories of contaminant uranium in the subsurface environment and to identify the mechanism(s) controlling the mobility (i.e., leaching and sorption) of uranium in the 300 Area. In addition to providing insight on the fate of contaminant uranium in the vadose zone, data from these studies were used to create a “box model” of the inventory of uranium in sediments and groundwater beneath the 300 Area (Peterson et al. 2008a). While a significant amount of scientific information has been gathered as a result of these activities, there are still uncertainties regarding the location and inventory of contaminant uranium in the 300 Area vadose zone and aquifer. These uncertainties present obstacles for evaluating remediation options for the persistent uranium plume in groundwater. Opportunistic sediment samples collected during a drilling campaign in 2007 became available for uranium characterization in 2008. The primary objectives of this characterization activity were to 1) determine the extent of uranium contamination in the sediments, 2) quantify the leachable (labile) concentration of uranium in the sediments, and 3) create a data set that could be used to correlate the present data to existing 300 Area data. -
Eisenhower's Dilemma
UNIVERSITY OF MICHIGAN Eisenhower’s Dilemma How to Talk about Nuclear Weapons Paul Gregory Leahy 3/30/2009 Leahy 2 For Christopher & Michael, My Brothers Leahy 3 Table of Contents Introduction….6 Chapter 1: The General, 1945-1953….17 Chapter 2: The First Term, 1953-1957….43 Chapter 3: The Second Term, 1957-1961….103 Conclusion….137 Bibliography….144 Leahy 4 Acknowledgements I would to begin by taking a moment to thanks those individuals without whom this study would not be possible. Foremost among these individuals, I would like to thank Professor Jonathan Marwil, who had advised me throughout the writing of this thesis. Over countless hours he persistently pushed me to do better, work harder, and above all to write more consciously. His expert tutelage remains inestimable to me. I am gratified and humbled to have worked with him for these many months. I appreciate his patience and hope to have created something worth his efforts, as well as my own. I would like to thank the Department of History and the Honors Program for both enabling me to pursue my passion for history through their generous financial support, without which I could never have traveled to Abilene, Kansas. I would like to thank Kathy Evaldson for ensuring that the History Honors Thesis Program and the Department run smoothly. I also never could have joined the program were it not for Professor Kathleen Canning’s recommendation. She has my continued thanks. I would like to recognize and thank Professor Hussein Fancy for his contributions to my education. Similarly, I would like to recognize Professors Damon Salesa, Douglass Northrop, and Brian Porter-Szucs, who have all contributed to my education in meaningful and important ways. -
Nuclear Power – a Flawed Case: Part 1: Why We Don't Need Nuclear
nuclear power – a flawed case part 1: why we don’t need nuclear now In the first instalment of a two-part article arguing the case against nuclear energy, Andrew Blowers suggests that nuclear power is far from necessary either to maintain sufficient energy supply or to save the planet The case for nuclear energy is based on two simple (Scotland had declared a non-nuclear energy policy) and seemingly incontrovertible claims. One is that were initially identified as ‘potentially suitable’ for the ‘We need nuclear energy to stop the lights from deployment of new nuclear stations. Eventually the going out’; the other that ‘We must have nuclear list was reduced to eight, all at locations with existing energy to save the planet’. In this, the first of two nuclear facilities – at Bradwell, Hartlepool, Heysham, articles, I shall attempt to refute these claims and Hinkley Point, Oldbury, Sellafield, Sizewell, and Wylfa.3 argue the contrary; that we can keep the lights on Although chosen for pragmatic reasons of land and tackle the problem of climate change without availability and presumed public support, the sites nuclear energy. Indeed, any further commitment to were subject to a convoluted ‘Strategic Siting nuclear energy is more likely to hinder than help Assessment’ that had, in effect, achieved what I achieving those objectives. called in an earlier article ‘premature legitimation for To all intents and purposes nuclear energy was dead a predetermined policy’.4 Siting was part of a set of and buried in the UK until its sudden and surprising fast-track processes designed to achieve the revival in the early years of this century.