SL 400 Combination Cultivator/Disc Harrow Power Requirement and Quality of Work

Total Page:16

File Type:pdf, Size:1020Kb

SL 400 Combination Cultivator/Disc Harrow Power Requirement and Quality of Work DLG Test Report 6256 F Great Plains International SL 400 combination cultivator/disc harrow Power requirement and quality of work Test Center Technology and Farm Inputs www.DLG-Test.de Overview The FokusTest is a smaller­scale The DLG – actual working depth and DLG usability test intended to FokusTest “Power cul tivation horizon of the tools; allow product differentiation and requirement and – profile of the soil surface before special highlighting of innova­ quality of work” and after the working step; tions in machinery and technical was carried out with the GREAT products used primarily in agri­ PLAINS DTX 300 mounted short – crumbling of the soil culture, forestry, horticulture, disc harrow with deep loosening (aggregate size distribution); fruit cultivation and viticulture, as tines (working width: 300 cm – compactness after the well as in landscape and munici­ (118 in.)). The measurements were working step; pal management. taken on harvested, largely flat – straw covering and straw areas of wheat cultivation at the incorporation; This test focuses on testing a DLG International Crop Production product’s individual qualitative Center in Bernburg­Strenzfeld – operation. criteria, e.g. fatigue strength, per­ (Saxony­Anhalt). formance, or quality of work. In addition, the tractor’s fuel con­ The DLG FokusTest “Power sumption was measured. The scope of testing can include requirement and quality of work” In order to document the field criteria from the testing frame­ examined the following testing conditions during soil cultivation, work of a DLG SignumTest, the para meters based on the DLG the stubble heights, straw yield and DLG’s extensive usability test testing framework for soil cultiva­ ground moisture were determined for technical products, and con­ tion equipment: and described. cludes with the publishing of – tractive power requirement; a test report and the awarding – actual travel speed and theore­ Other criteria were not of a test mark. tical area treated per hour; examined in this test. Assessment – Brief Summary The GREAT PLAINS SL 400 combi­ In the second, somewhat deeper soil as the travel speed increases from nation cultivator/disc harrow allows cultivation step, the tractive power 51 % at 6.6 km/h (4.1 mph) to 66 % stubble cultivation (first soil cultiva­ requirement is 94 kW (128 PS) (at at 9.3 km/h (5.8 mph). For the tion step), as well as the subsequent 6.6 km/h (4.1 mph)) and 151 kW deeper soil cultivation step, the dis­ deeper soil cultivation steps. The (205 PS) (at 9.3 km/h (5.8 mph)). As tribution of the incorporated straw tests were carried out at two travel expected, there were corresponding over the various soil horizons is al­ speeds (7 km/h (4.3 mph) and gradations in the measured fuel con­ most identical at both travel speeds. 9.5 km/h (5.9 mph)). The following sumption values. These are approx. 72 % of the incorporated straw is working depths were specified and 13.5 l/ha (1.4 GPA) and 15.5 l/ha mixed into the upper soil horizon adhered to for these tests: (1.7 GPA) at travel speeds of 7 km/h (0 to 5 cm (0 to 2 in.)), approx. 26 % – First soil cultivation step: (4.3 mph) and 9.5 km/h (5.9 mph) into the second soil horizon (5 to working depth of discs: 8 cm respectively. 10 cm (2 to 4 in.)), and 2 % into the soil horizon between 10 cm (4 in.) (3.1 in.); working depth of culti­ The evenness of the surfaces and and 15 cm (6 in.). vator tines: 18 cm (7.1 in.) the compactness after cultivation – Second soil cultivation step: were at a comparable level in all The discs’ cutting angle can be con­ working depth of discs: 10 to trial variants. figured quickly and easily (+). The working depth of the disc harrow is 16 cm (3.9 to 6.3 in.); working With the first soil cultivation step, adjusted without tools by inserting depth of cultivator tines; 20 to 73 % of the straw is incorporated or removing spacers on a piston 25 cm (7.9 to 9.8 in.) into the soil at a straw covering of rod. This requires the operator to 8.8 t/ha (3.9 TPA) and a working The measurement runs were per­ climb inside the equipment’s frame speed of 7.1 km/h (4.4 mph). At a formed without disturbances; no (–). In order to adjust the working working speed of 9.6 km/h (6 mph), blockages occurred and no lateral depth of the cultivator tines, the op­ 82 % of the straw is incorporated pull was identified. erator must climb under the equip­ into the soil. In the first soil cultivation step, the ment and adjust the height of the tractive power requirement is For the second, deeper soil cultiva­ blade arms (–). The SL 400 has a 110 kW (150 PS) (at a working speed tion step, the straw covering was permanently installed lighting unit of 7.1 km/h (4.4 mph)) and 162 kW 3.5 t/ha (1.6 TPA). Here, the propor­ (+) and a facility (bracket) for the or­ (220 PS) (at 9.6 km/h (6 mph)). tion of incorporated straw increases derly storage of hydraulic lines (+). DLG Test Report 6256 F Page 2 of 12 The Product Manufacturer and Applicant Manufacturer: Great Plains UK Ltd Woodbridge Road, Sleaford Lincolnshire, NG34 7EW, England Product: Towed SL 400 combination cultiva­ tor/disc harrow Applicant: Great Plains International 1525 East North Street Salina, Kansas 67401­5060 USA [email protected] www.greatplainsmfg.de Figure 2: Tel.: +49 (0) 151 7022 9901 Front and rear rows of discs with conical concave discs, with cultivator tines fitted between them for deeper soil cultivation Description and Technical Data According to the manufacturer, the GREAT PLAINS SL 400 towed com­ bination cultivator/disc harrow is suitable for stubble cultivation, deeper soil cultivation and seedbed preparation. If additionally fitted with the “Turbo Jet” sowing unit, it can also sow oilseed rape, grass seed and intermediate crops during the soil cultivation process. Great Plains supplies the equipment in working widths of 4.0 metres (157 in.), 5.0 metres (197 in.), 6.0 metres (236 in.) and 6.7 metres (264 in.). The SL 400 used in the DLG test had a working width of 4.0 metres (157 in.). The mounted equipment is attached to the tractor via the linkage arms (category III). Figure 3: Disc cutting angle adjustment (shown here: rear row of discs) The equipment has 10 cultivator tines between the two rows of discs on the disc harrow. It is therefore The disc spacing in the SL 400 is supporting arms also provide over­ possible with the SL 400 to carry 266 mm (10.5 in.) and the line spac­ load protection (also Figure 2). Ac­ out shallow soil cultivation with ing is 133 mm (5.25 in.). cording to the manufacturer, this straw incorporation in conjunction means each disc can lift out of the The cone­shaped concave discs of with soil loosening down to a depth way individually on contact with an the tested machine (Figure 2) have of 25 cm (9.8 in.) in a single work­ obstacle. This does not affect the a diameter of 500 mm (19.7 in) and ing step. For the working width of working depth of the other discs. are each mounted on a ball bear­ 4 metres, the device is fitted with The operator can adapt the cutting ing, each of which has a grease nip­ 16 discs in each of the first and sec­ angle of the two rows of discs to the ple. If special grease is used for ond rows of discs. All of the discs in respective field conditions. Four maintenance, each grease nipple the first row are curved in the same cranks are used to manually adjust must be lubricated after 200 hours. direction. All of the discs in the sec­ the angle steplessly from 0 to 25 de­ ond row are curved in the opposite Each disc is connected to the frame grees. Each crank is fitted with a direction. via a supporting arm. The flexible five­step scale (Figure 3). DLG Test Report 6256 F Page 3 of 12 The working depth of the disc harrow is configured via the linkage arms of the tractor’s lifting gear and via the penetration depth of the rear roller. In order to adjust the working depth on the rear roller, the operator must insert or remove spacers on two piston rods (Figure 4). The working depth of the 10 culti­ vator tines is adjusted individually for each tine. To do this, a bolt must be removed on the respective tine. Once the operator has shifted the tine manually to the desired height, the bolt is passed back through the hole in the tine in order to fix the share at the corresponding height Figure 4: (also Figure 2). According to the Depth adjustment by inserting spacers on two piston rods of the rear roller manufacturer, this allows the re­ spective tines to be adjusted indi­ vidually, for example in order to loosen up compaction caused by the towing vehicle for soil cultiva­ tion or compacted soil in the ma­ chine tracks. Hydraulic depth ad­ justment is fitted as standard to the SL with a working width of 6.7 me­ tres (264 in.). The 10 cultivator tines on the tested equipment have a line spacing of 42.5 cm (16.7 in.). The SL 400 combination cultivator/ disc harrow (working width: 4.0 metres (157 in.)) used in the DLG FokusTest was equipped with the two­part “Double Disc Light” steel packer roller with a total of six rear roller options and rear draw­ bar.
Recommended publications
  • Farm Machinery Selection
    Farm Machinery Ag Decision Maker Selection File A3-28 utting together an ideal machinery system long run; machinery that is too small may result in is not easy. Equipment that works best one lower crop yields or reduced quality. year may not work well the next because of P Ownership Costs changes in weather conditions or crop production practices. Improvements in design may make older Machinery ownership costs include charges for de- equipment obsolete. And the number of acres be- preciation, interest on investment, property taxes, ing farmed or the amount of labor available may insurance and machinery housing. These costs change. increase in direct proportion to machinery invest- ment and size. Because many of these variables are unpredictable, the goal of the good machinery manager should be Operating Costs to have a system that is flexible enough to adapt Operating costs include fuel, lubricants and repairs. to a broad range of weather and crop conditions Operating costs per acre change very little as ma- while minimizing long-run costs and production chinery size is increased or decreased. Using larger risks. To meet these goals several fundamental machinery consumes more fuel and lubricants per questions must be answered. hour, but this is essentially offset by the fact that more acres are covered per hour. Much the same is Machine Performance true of repair costs. Thus, operating costs are of mi- First, each piece of machinery must perform reli- nor importance when deciding what size machinery ably under a variety of field conditions or it is a is best suited to a certain farming operation.
    [Show full text]
  • Rolling Harrow® Soil Conditioner
    one pass soil conditioning as good as it gets ROLLING HARROW ® Soil Conditioners Models 1245, 1245D, 1645 and 1645D umequip.com SEEDBED TILLAGE one pass soil conditioning as good as it gets ROLLING HARROW ® Soil Conditioners Models 1245, 1245D, 1645 and 1645D umequip.com SEEDBED TILLAGE one pass soil conditioning Unverferth® as good as it gets ROLLING HARROW ® ROLLING HARROW® SOIL CONDITIONER Help ensure optimum performance from your high-value seed by preparing a seedbed that's as good as it gets. Hitch the Unverferth® Rolling Harrow® soil conditioner to your tillage tool, and the result is a ready-to-plant seedbed with coarse soil on top that resists crusting and finer particles at planting depth for greater seed-to-soil contact for quicker, more uniform germination and emergence. Choosing the correct Rolling Harrow soil conditioner to meet your needs depends on your operation and tillage practices. ALL MODELS FEATURE • Up to 22" of ground clearance during transport • Standard drop-leg jack for convenient hitching while contributing little additional weight to the lead and unhitching tillage tool for reduced stress and increased life • High-clearance, arched and oscillating roller frame • Telescopic tongue for easily matching the turning keeps both baskets or drums working the soil, even in radius of the lead implement the most extreme, rocky conditions • Only one set of tractor hydraulics required; dual • Basket arm pivot cover prevents rocks and debris hoses and/or selector valves are optional for from accumulating to ensure baskets follow models up to 45'; two sets of hydraulics on 47' and ground contours larger models • All hoses include end caps and are routed through mainframe for longer life IN THIS BROCHURE..
    [Show full text]
  • Short- and Full-Season Soybean in Stale Seedbeds Versus Rolled- Crimped Winter Rye Mulch
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2013 Short- and full-season soybean in stale seedbeds versus rolled- crimped winter rye mulch Frank Forcella USDA-ARS, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Forcella, Frank, "Short- and full-season soybean in stale seedbeds versus rolled-crimped winter rye mulch" (2013). Publications from USDA-ARS / UNL Faculty. 1488. https://digitalcommons.unl.edu/usdaarsfacpub/1488 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Renewable Agriculture and Food Systems: 29(1); 92–99 doi:10.1017/S1742170512000373 Short- and full-season soybean in stale seedbeds versus rolled-crimped winter rye mulch Frank Forcella* North Central Soil Conservation Research Laboratory, USDA-ARS, 803 Iowa Avenue, Morris, MN, USA. *Corresponding author: [email protected] Accepted 6 November 2012; First published online 10 January 2013 Research Paper Abstract Stale seedbeds are used by organic growers to reduce weed populations prior to crop planting. Rye mulches, derived from mechanically killed (rolled and crimped) winter rye cover crops, can serve the same purpose for spring-planted organic crops. Both methods can also be employed by conventional growers who face looming problems with herbicide resistant weeds.
    [Show full text]
  • Stale Seedbed Practices for Vegetable Production
    HORTSCIENCE 36(4):703–705. 2001. tional tillage program. The intent was to deter- mine the best method for killing seedlings in stale seedbed systems and the usefulness of a Stale Seedbed Practices for Vegetable single weed removal pass vs. several passes Production with brief intervening fallow periods. Materials and Methods Brian Caldwell South Central New York Area Vegetable and Small Fruit Program, Cornell Studies were conducted at the NRCS Big Flats Plant Materials Center, at Big Flats, Cooperative Extension, Owego, NY 13827 N.Y., during the 1997 and 1998 growing Charles L. Mohler1 seasons. The soil type was a Unadilla silt loam (course-silty, mixed, mesic, typic Dystro- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, chrept), and the fields were nearly level. NY 14853 The fields had cover crops of winter-killed oats (Avena sativa L.) and were initially field Additional index words. weeds, cultivation, flaming, glyphosate, purslane, chickweed cultivated and harrowed in Apr. 1997 and May Abstract. Effects of several stale seedbed procedures on weed density and biomass were 1998. Treatments were replicated four times in evaluated on a silt loam soil in central New York. After an initial rotary tillage, weeds were a randomized complete-block design. Plots allowed to emerge and either single or multiple applications of glyphosate, propane flame, measured 3.6 × 3.6 m. spring tine weeder, springtooth harrow, or rotary tiller were used to kill the weeds over a Initial seedbeds were prepared with a tractor 4-week period. The last (or only) application occurred immediately prior to simulated mounted 1.5-m John Deere rotary tiller (Deere seeding of a crop performed by passing an empty seeder through the plots.
    [Show full text]
  • Posters4research.Com”
    Using the Best Land Preparation Leads to an Increase the Crop Productivity in Sudan Majdaldin Rahamtallah Abualgasim Mohammed¹, Hanadi Mohamed Shawgi Gamal² ¹ National Center for Research, Natural Resources and Desertification Inst., Sudan ² University of Khartoum, Fac. of Forestry; Forest Products and Industries, Sudan INTRODUCTION The following tillage implements were used: RESULTS Agriculture is considered as the mainstay of the 1. Disc plough (depth 20 cm) + leveling + ridging. The results recorded that the field efficiency of (chisel Sudanese economy and accounts for about 38.9% of 2. Chisel plough (depth 30cm) + leveling + ridging plough (90.5), disc plough (85.5), harrow plough (70.5), the GDP, provides about 80% of the country’s export, 3.disc harrow (depth 25 cm) + leveling + ridging Ridger plough (50.5) and the animal-drawn plough (15.5) and employs 62% of the labour force, with about 80% 4. Ridging only (depth 25 cm). respectively. the results showed that the fuel consumption of the population dependent on agriculture for 5. Animal drawn plough (depth 15cm). in litter/ ha recorded 6.50, 3.30, 2.60 and 2.10, livelihood and raw materials for the industries. respectively. Tillage is the practice of modifying the state of the soil DH+R 1 CH+R DP+R R An in order to provide condition favorable for plant Implement Draft EFC ha/hr TFC FE% Fuel m growth. Excessive tillage may increase the risk of (KN) ha/hr Consumptio water loss and soil erosion by wind and water. n L/ha Conventional tillage practices in the semi arid regions 1m often-burry excessive quantities of residues and reduce CH+R DH+R R An DP+R Chisel Plough 7.50 0.15 0.17 90.50 6.50 soil tendency for clodding and surface roughness.
    [Show full text]
  • Kelly Tillage System Offers a Wide Array of Ground Engaging Discs to Satisfy Your Year Round Tillage Spike Disc Chain Requirements
    A Better Seedbed for a Better Bottom Line Kelly... ... Inspired by community Kelly Engineering is a family business with strong community values. We believe in servicing our customers well, caring for our staff and ensuring that our products contribute to sustainable agriculture. It is our aim to have satisfied customers promoting our products and contributing to our continued improvement. Our staff are critical members of the Kelly Engineering team and their dedication and pride is demonstrated in each and every product we sell. Sustainable Agriculture for us means improvements in soil structure and productivity. Build up of soil carbon, best use of soil moisture, integrated weed management and improved economic margins. We thank you for showing an interest in our products. If there is anything the team or I can do for you, please do not hesitate to contact us. Shane Kelly To view the full Kelly story go to http://www.kellyharrows.com/video-gallery/ Kelly Engineering is located on the family farm, 10km south of Booleroo Centre in the northern agricultural region of South Australia. Nestled in the foot hills of the rugged and picturesque Flinders Ranges, Booleroo Centre has a long history of agricultural innovation. The Kelly family connection with this area stretches back to 1875 when our forefathers settled on the farm where our factory now stands. One machine for year round tillage Kelly CL2 Disc Chain CL1 Disc Chain Kelly Diamond Harrow Kelly Tillage Chain System Whether it’s stubble management, weed control, moisture management or creating that perfect seedbed prior to planting, the unique diamond shaped Kelly Tillage System offers a wide array of ground engaging discs to satisfy your year round tillage Spike Disc Chain requirements.
    [Show full text]
  • Secondary Tillage Implements
    SECONDARY TILLAGE Tillage operations following primary tillage which are performed to create proper soil tilth for seeding and planting are secondary tillage. These are lighter and finer operations, performed on the soil after primary tillage operations. Secondary tillage consists of conditioning the soil to meet the different tillage objectives of the farm. These operations consume less power per unit area compared to primary tillage operations. Secondary tillage implements may be tractor drawn or bullock drawn implements. 1. Harrow Harrow is a secondary tillage implement that cuts the soil to a shallow depth for smoothening and pulverizing the soil as well as to cut the weeds and to mix the materials with the soil. There are several types of harrow used in India such as disc harrow, spike tooth harrow, spring tooth harrow, acme harrow, patela, triangular harrow, bade harrow, guntaka and reciprocating power harrow. 1.1. Disc harrow It is a harrow, which performs the harrowing operation by means of a set, or a number of sets of rotating slat discs, each set being mounted on a common shaft. Disc harrow is found very suitable for hard ground, full of stalks and grasses. It cuts the lumps of soil, clods and roots. Disc are mounted on one, two or more axles which may be set at a variable angle to the line of motion. As the harrow is pulled ahead, the discs rotate on the ground. Depending upon the disc arrangements, disc harrows are divided into two classes a) Single action and b) Double action. Single action disc harrow It is a harrow with two gangs placed end to end, which throw the soil in opposite directions.
    [Show full text]
  • Power Harrow Range
    Power Harrow Range POWER HARROW RANGE A RANGE CATERING TO EVERY DEMAND! With more than 50 years' experience in the production of power harrows, MASCHIO GASPARDO is in a posi- tion to offer one of the most comprehensive and reliable ranges in the market, enabling farmers the world over to rest assured that they are always choosing a high-quality product, with a range catering to both smaller and large-scale farm. AGRONOMIC BENEFITS • Excellent seedbed preparation • Fast sowing • No plough sole formation • Uniform levelling • Even germination 2 CONTENTS MASCHIO HARROWS: performance guaranteed 4 FIXED FRAME 8-15 FOLDING FRAME 16-27 ROLLERS 28 COMBI SOLUTIONS 30 JUMBO 8000 3 MASCHIO HARROWS: PERFORMANCE GUARANTEED! Gearboxes The central, side or transfer gearboxes are all built with as few gears as possible, reducing friction in favour of lower fuel consumption. The bevel gears feature large gears with helical teeth: increasing the contact surface reduces the play inside the gearbox, which is entirely beneficial for the transmission of power. Double-skinned construction Comprising a double-skinned trough - with a 6mm-thick inner and 5mm-thick outer - MASCHIO GASPARDO harrows feature a stronger, more rigid construc- tion, delivering high performance under all conditions. COMPETITORS Stress test comparison The double-skinned trough makes the harrow more rigid and prevents it from twisting or bend- ing, while there is no significant increase in weight. The trough, featuring an exclusive design, is made from high-strength steel. Stone deflectors The protective wedge-shaped deflectors are bolted onto the trough's outer skin, protecting the space between the rotors from being hit by rocks or other debris, stopping such foreign objects from getting inside and poten- tially jamming the rotors.
    [Show full text]
  • Farm Machinery Custom and Rental Rate Guide
    2020-21 Farm Machinery Custom and Rental Rate Guide This guide has been established to provide approximate costs for renting equipment or obtaining custom farming operations from another farmer. It is not intended for establishing rates for individuals or companies that rent equipment or contract custom farming operations as a business. Updated August 2020 saskatchewan.ca/agriculture Table of Contents Introduction ............................................................................................................................................................................................ 3 New Information in the 2020-21 Guide .......................................................................................................................... 3 Caution ....................................................................................................................................................................................... 3 Methodology ............................................................................................................................................................................ 3 Assumptions ............................................................................................................................................................................. 4 Operating costs ....................................................................................................................................................................... 5 Using the Guide ......................................................................................................................................................................
    [Show full text]
  • The Guide to Good Black Grass Stale Seedbeds
    The Guide To Good Black Grass Stale Seedbeds An essential checklist to maximise the agronomic benefits FOREWORD Independent Soil Advisor by Philip Wright www.wrightresolutions.co.uk/id2 Stale Seedbeds : The importance of soil structure The soil on your farm is your most important asset, providing the foundation for yield and profit. Yield losses attributable to compaction range from 15% to 50% or greater. These losses can be the difference between profit and loss for many crops, so avoiding and correcting compaction is key. Maintaining good soil structure is vital; key indicators of good soil structure include: Porosity - to allow easy passage of roots, plus for good air and water storage or movement; Stable aggregates - to cope with heavy rain, and to resist breakdown or loss by erosion; Good biology - having adequate levels of organic matter, aerobic conditions and ‘soil life’ including good earthworm numbers; 2 THE GUIDE TO GOOD BLACK GRASS STALE SEEDBEDS Above left : Above right : Well aggregated structure. Compact low-porosity soil with a wet layer holding water. Drainability - capable of a fast return from saturation to field capacity after high rainfall; Good crops - high yielding crops develop large root systems which maintain good structure. COURTESY OF LEMKEN UK / AGRII 3 Compaction is best spotted when soils are moist to wet. Digging holes will show layers resisting moisture movement, and checking root growth through the profile will show if remediation is needed. Long term, building roots and organic matter levels through the profile will give a sustainable structure. Removing barriers to water and root movement will allow nature to work most efficiently to provide this.
    [Show full text]
  • Review Article STALE SEEDBED TECHNIQUE of WEED MANAGEMENT: a REVIEW
    International Journal of Agriculture Sciences ISSN: 0975-3710&E-ISSN: 0975-9107, Volume 8, Issue 61, 2016, pp.-3490-3493. Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217 Review Article STALE SEEDBED TECHNIQUE OF WEED MANAGEMENT: A REVIEW SANBAGAVALLI S.1*, SOMASUNDARAM E.2, MARIMUTHU S.3 AND RAMESH CHELVI4 1Department of Pulses, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India 2Department of Sustainable Organic Agriculture, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India 3Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India 4Cotton Research Station, Srivilliputtur, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India *Corresponding Author: [email protected] Received: December 01, 2016; Revised: December 12, 2016; Accepted: December 14, 2016; Published: December 18, 2016 Abstract- Weeds are the greatest menace in agriculture, which reduces the yield of crop by 10-90 per cent. Weeds are dangerous not only because of their competition for inputs, but also due to their survival capacity as per the old saying “one year seedling seven year weeding”. The worst annual species are those having a high seed production and/or those producing seeds over a prolonged period of time. To reduce weed pressure it is important to prevent inflow of weed seeds from the environment. In stale seedbed land management practice, the weeds are stimulated to emerge and controlled by various measures prior to cropping. A key component of a well prepared stale seedbed is the absence of weeds at sowing, as well as uncontrolled weeds at sowing/planting have the potential to significantly impair stand establishment and crop yields.
    [Show full text]
  • A Study of Agricultural Implements
    A STUDY OF AGRICULTURAL IMPLEMENTS .BY... NORMAN CHARLES WOODIN THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING IN THE COLLEGE OF ENGINEERING OF THE UNIVERSITY OF ILLINOIS PRESENTED JUNE, 1904 CONTENTS. HISTORY. 1. Walking Plows. 2. Sulky and Gang Plows. 3. Harrows. 4. Grain Drills. 5. Corn Planters & check-rowers. 6. Corn Cultivators. STUDY 1. Plows. (1) Technical Terms. (2) Classification. (3) Sue tion and Land. (4) Line of Draft. (5) Tempering. (6) Classification of Goods of a Plow Manufactory. (7) Walking Plows. (1) General Purpose Plows. (2) Stubble Plows. (8) Riding Plow's. (9) Disc Plow's. (10) Curves of Plows and Profile machine. 2. Harrows. (1) Spike Tooth Harrow (2) Disc Harrows. 3. Corn Planters and Check- Rowers. 4. Cultivators. 1. A STUDY OF AGRICULTURAL IMPLEMENTS. INTRODUCTORY. There are today five distinct classes of agricultural implements. Sometimes six classes are given. They are as follows: (1) Implements for clearing the ground, break­ ing it and otherwise preparing it for the reception of the seed. (2) Implements for depositing the seed. (3) Implements for the cultivation of the plant. (4) Implements for gathering the crops. (5) Implements for preparing the crops for market. (6) Miscellaneous implements applied to var­ ious farm uses. The first, second and third classes are manufactured in one factory and form one industry, while the fourth and fifth classes each form separate industries. These are kept separate and very seldom are they seen to intermingle. It is the first class of business, comprising the first second and third classes of implements to which this thesis is devoted.
    [Show full text]