nanomaterials Review A Review of Recent Advances of Dielectric Barrier Discharge Plasma in Catalysis Ju Li 1, Cunhua Ma 1,*, Shengjie Zhu 1, Feng Yu 1 , Bin Dai 1 and Dezheng Yang 2,3 1 Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
[email protected] (J.L.);
[email protected] (S.Z.);
[email protected] (F.Y.);
[email protected] (B.D.) 2 Laboratory of Plasma Physical Chemistry, School of Physics, Dalian University of Technology, Dalian 116024, China;
[email protected] 3 Key Laboratory of Ecophysics, College of Sciences, Shihezi University, Shihezi 832003, China * Correspondence:
[email protected]; Tel.: +86-0993-205-8775 Received: 28 August 2019; Accepted: 21 September 2019; Published: 9 October 2019 Abstract: Dielectric barrier discharge plasma is one of the most popular methods to generate nanthermal plasma, which is made up of a host of high-energy electrons, free radicals, chemically active ions and excited species, so it has the property of being prone to chemical reactions. Due to these unique advantages, the plasma technology has been widely used in the catalytic fields. Compared with the conventional method, the heterogeneous catalyst prepared by plasma technology has good dispersion and smaller particle size, and its catalytic activity, selectivity and stability are significantly improved. In addition, the interaction between plasma and catalyst can achieve synergistic effects, so the catalytic effect is further improved. The review mainly introduces the characteristics of dielectric barrier discharge plasma, development trend and its recent advances in catalysis; then, we sum up the advantages of using plasma technology to prepare catalysts.