Proposal for the Development of a National Strategy on Invasive Alien Species in Croatia RiccardoScalera July2011

Total Page:16

File Type:pdf, Size:1020Kb

Proposal for the Development of a National Strategy on Invasive Alien Species in Croatia � Riccardo�Scalera� � � �July�2011 Proposal for the Development of a National Strategy on Invasive Alien Species in Croatia Riccardo Scalera July 2011 Acknowledgements: WWF would like to acknowledge the support of the working group members for their contribution in making the proposal for the development of a National Strategy on Invasive Alien Species in Croatia: Ministry of Environment/Directorate for Nature Protection (Ivana Jelinic, Zrinka Domazetovic) State Institute for Nature Protection (Aljosa Duplic, Igor Borsic, Luka Katusic) Croatian Environmental Agency (Gordana Kolacko) Contents 1 SUMMARY ..................................................................................................................................................................... 2 2 INTRODUCTION ........................................................................................................................................................ 3 3 INVASIVE ALIEN SPECIES IN CROATIA .............................................................................................................. 5 3.1 SPECIES , THREATS AND PATHWAYS ............................................................................................................................... 5 3.2 LEGISLATIVE FRAMEWORK ........................................................................................................................................... 7 3.3 KEY INITIATIVES .......................................................................................................................................................... 9 3.3.1 Main projects targeting IAS .................................................................................................................................... 10 4 THE IAS STRATEGY FOR CROATIA ..................................................................................................................... 13 4.1 GENERAL OBJECTIVES ................................................................................................................................................ 14 4.2 STRATEGIC GOALS ...................................................................................................................................................... 15 4.3 TERMINOLOGY ........................................................................................................................................................... 16 5 PREVENTION OF INTRODUCTIONS ................................................................................................................. 18 5.1 ENVIRONMENTAL EDUCATION .................................................................................................................................. 18 5.2 REGULATION OF TRADE ............................................................................................................................................. 20 5.2.1 Risk analysis ....................................................................................................................................................... 21 5.2.2 Black list ............................................................................................................................................................ 21 6 EARLY DETECTION AND RAPID RESPONSE .................................................................................................. 24 6.1 SURVEILLANCE AND MONITORING ............................................................................................................................. 25 6.2 DIAGNOSIS AND DATA PROCESSING ........................................................................................................................... 27 6.3 QUICK SCREENING ..................................................................................................................................................... 28 6.4 RESPONSE ACTIONS .................................................................................................................................................... 29 6.4.1 Ecological Restoration ............................................................................................................................................ 30 6.5 FOLLOW UP ................................................................................................................................................................ 32 7 DECISION SUPPORT TOOLS ................................................................................................................................. 34 7.1 DATABASES AND INVENTORIES .................................................................................................................................. 34 7.2 EXPERTS REGISTER ..................................................................................................................................................... 36 7.3 RESEARCH ACTIVITIES ................................................................................................................................................ 37 7.4 SPECIES IDENTIFICATION TOOLS ................................................................................................................................ 37 7.5 SPECIES ACCOUNTS ..................................................................................................................................................... 38 8 IMPLEMENTATION OF THE STRATEGY .......................................................................................................... 40 8.1 ROLES AND RESPONSIBILITIES .................................................................................................................................... 41 8.1.1 National Advisory Committee on IAS ...................................................................................................................... 41 8.2 REPORTING AND CIRCULATION OF INFORMATION ...................................................................................................... 44 8.2.1 Integration with regional networks ............................................................................................................................ 45 8.3 LEGISLATION ............................................................................................................................................................. 46 REFERENCES ...................................................................................................................................................................... 49 ANNEX I - NATIONAL COE WORKSHOP ON IAS (2006) ........................................................................................... 50 ANNEX II – NATIONAL LEGISLATION DEALING WITH IAS ................................................................................ 51 ANNEX III - ACTIVITIES CONCERNING IAS CONDUCTED IN THE PERIOD 2009-2011 ................................. 72 ANNEX IV – MAIN PAPERS ON IAS PUBLISHED IN THE PERIOD 2010-2011 ..................................................... 74 1 Summary In order to ensure a prompt and coordinated response to prevent the introduction of IAS into nature in Croatia and continue resolving the issues of existing IAS – as foreseen within the Strategy and action plan for the protection of biological and landscape diversity of the Republic of Croatia - it is urgent to develop and implement dedicated national strategy on IAS. This Draft proposal for the development of a National strategy on IAS in Croatia , built as part of the WWF MedPo project Protected Areas for a Living Planet – Dinaric Arc Ecoregion Project: Study on invasive species sets out the Croatian regulatory framework relevant to the issue, and details the key actions required to address the problems caused by IAS. The aimis the future development of a comprehensive national policy framework on IAS, to be harmonised/integrated with other frameworks implemented in Europe. Indeed this strategy provides a framework for a more co-ordinated and structured approach to dealing with IAS and any potential invasive threat in or to Croatia. It includes better co-ordinated and strategic prevention measures aimed at reducing the introduction of damaging IAS into Croatia. Its implementation will enable more rapid detection of potential IAS through improved and better targeted monitoring and surveillance. Where appropriate, and subject to adequate resources and technical capability, contingency planning and improved capacity to act decisively will enable rapid responses with a view to eradicating newly arrived invasive species. Implementation should lead to more targeted and efficient control, mitigation and, where both necessary and feasible, eradication of established IAS. It will also lead to greater public awareness, more strategic research and proposals for an improved legislative framework. More in detail, the proposed strategy focuses on the following four strategic goals: 1. To minimise the risk of IAS entering and becoming established in Croatia , by promoting best practices for prevention, including an increased and widespread awareness and understanding of the negative impacts caused by IAS, and an improved regulation of trade through the support of black list and risk analysis tools; 2. To establish a national guiding framework for responding promptly and effectively to biological invasions before they take hold, through a coordinated systemof measures for detection, surveillance and monitoring, diagnosis, risk assessments, identification of proper response and implementation of mitigation,
Recommended publications
  • Climate Change and Conservation of Orophilous Moths at the Southern Boundary of Their Range (Lepidoptera: Macroheterocera)
    Eur. J. Entomol. 106: 231–239, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1447 ISSN 1210-5759 (print), 1802-8829 (online) On top of a Mediterranean Massif: Climate change and conservation of orophilous moths at the southern boundary of their range (Lepidoptera: Macroheterocera) STEFANO SCALERCIO CRA Centro di Ricerca per l’Olivicoltura e l’Industria Olearia, Contrada Li Rocchi-Vermicelli, I-87036 Rende, Italy; e-mail: [email protected] Key words. Biogeographic relict, extinction risk, global warming, species richness, sub-alpine prairies Abstract. During the last few decades the tree line has shifted upward on Mediterranean mountains. This has resulted in a decrease in the area of the sub-alpine prairie habitat and an increase in the threat to strictly orophilous moths that occur there. This also occurred on the Pollino Massif due to the increase in temperature and decrease in rainfall in Southern Italy. We found that a number of moths present in the alpine prairie at 2000 m appear to be absent from similar habitats at 1500–1700 m. Some of these species are thought to be at the lower latitude margin of their range. Among them, Pareulype berberata and Entephria flavicinctata are esti- mated to be the most threatened because their populations are isolated and seem to be small in size. The tops of these mountains are inhabited by specialized moth communities, which are strikingly different from those at lower altitudes on the same massif further south. The majority of the species recorded in the sub-alpine prairies studied occur most frequently and abundantly in the core area of the Pollino Massif.
    [Show full text]
  • Feeding, Anatomy and Digestive Enzymes of False Limpet Siphonaria Guamensis
    World Journal of Fish and Marine Sciences 5 (1): 104-109, 2013 ISSN 2078-4589 © IDOSI Publications, 2013 DOI: 10.5829/idosi.wjfms.2013.05.01.66144 Feeding, Anatomy and Digestive Enzymes of False Limpet Siphonaria guamensis K.V.R. Murty, A. Shameem and K. Umadevi Department of Marine Living Resources Andhra University, Visakhapatnam 530 003, A.P., India Abstract: Very little information has been available in the literature on the feeding habits, anatomy and histology of digestive system of siphonariid limpets. The present study revealed Siphonaria guamensis feeds on the crustose red alga Hildenbrandia prototypus browsing on the rocks by rasping action of radula. The anatomy of digestive system of Siphonaria guamensis is similar with that of the other siphonariid limpets but the length of gut and colon are shorter than the patellogastropod limpets like Cellana radiata, patella vulgata, Fissurella barbadensis and species of Acmaea. The salivary glands are the main source of the enzyme system of Siphonaria guamensis. They contained enzymes which can act on carbohydrates, proteins and polysaccharides. The enzyme which can act on proteins was found only in salivary glands and not detected in any other part of the digestive system. No lypolytic activity was seen in any part of the digestive system of the animal. Key words: False Limpet Feeding Anatomy Digestive Enzymes INTRODUCTION tridentatum and C. minimum, where he described the morphology and histology of the digestive system at Little work has been done on the feeding, digestion length. anatomy and histology of the digestive organs of limpets Very little information has been available in the with an exception of patella vulgata (Davies and Fleure literature on the feeding methods, anatomy and histology [1], Graham [2], Stone and Morton [3], Fretter and Graham of the digestive system of siphonariid limpets.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Breeds in Republic of Croatia
    Legislative and institutional framework for the protection of native (autochthonous) breeds in Republic of Croatia Jasna Jeremić1, State Institute for Nature Protection; Mirna Dadić1, Ministry of Agriculture, Fishery and Rural Development; Ante Ivanković ², Agronomy Faculty University of Zagreb; Dražen Cerjanec³, Ministry of Agriculture, Fishery and Rural Development ¹State Institute for Nature Protection, Trg Mažuranića 5, 10 000 Zagreb, Croatia Phone: +385 1 5502 921 E-mail address: [email protected] ¹Ministry of Agriculture, Fishery and Rural Development, Ul. Grada Vukovara, 10 000 Zagreb, Croatia Phone: +385 1 6106 693 E-mail address: [email protected] ²Agronomy Faculty University of Zagreb, Svetošimunska cesta 25, 10 000 Zagreb, Croatia Phone:+385 1 2393 991 E-mail address: [email protected] ³Ministry of Agriculture, Fishery and Rural Development, Ul. Grada Vukovara, 10 000 Zagreb, Croatia Phone: +385 1 6106 971 E-mail address: [email protected] Key words: institutional framework, legislative framework, native breeds, protection, subsidies The protection of Croatian native breeds and varieties is covered by many Institutions and Acts. The Ministry of Agriculture, Fishery and Rural development addresses the issue through several responsible units: Department for Veterinary Science; Department of Agriculture; Department for Agricultural Policy, EU and International Relations; Department for Sustainable Rural Development and Direction for SAPARD/IPARD programme, Department for Market and Structural Support in Agriculture, Fishery and Rural Development and Department for Inspectional Affairs. The Ministry of Environmental Protection, Physical Planning and Construction governs the same issues through the Directorate for Atmosphere and Waste Management, Directorate for Environmental Assessment and Industrial Pollution, Directorate for the European Union, Directorate for International Cooperation and Sustainable Development, Directorate for Physical Planning, Inspectional Affairs etc.
    [Show full text]
  • Nudipleura Bathydorididae Bathydoris Clavigera AY165754 2064 AY427444 1383 AF249222 445 AF249808 599
    !"#$"%&'"()*&**'+),#-"',).+%/0+.+()-,)12+),",1+.)$./&3)1/),+-),'&$,)45&("3'+&.-6) !"#$%&'()*"%&+,)-"#."%)-'/%0(%1/'2,3,)45/6"%7/')89:0/5;,)8/'(7")<=)>(5#&%?)@)A(BC"/5)DBC'E752,3 +F/G"':H/%:)&I)A"'(%/)JB&#K#:/H#)FK%"H(B#,)4:H&#GC/'/)"%7)LB/"%)M/#/"'BC)N%#.:$:/,)OC/)P%(Q/'#(:K)&I)O&RK&,)?S+S?) *"#C(T"%&C",)*"#C(T",)UC(V")2WWSX?Y;,)Z"G"%=)2D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)[&&5&1K,)A9%BCC"$#/%#:'=)2+,)X+2;W) A9%BC/%,)</'H"%K=)3F/G"':H/%:)-(&5&1K)NN,)-(&[/%:'$H,)\$7T(1SA"6(H(5("%#SP%(Q/'#(:]:,)<'&^C"7/'%/'#:'=)2,)X2+?2) _5"%/11SA"'.%#'(/7,)</'H"%K`);D8D-S-"Q"'("%)D:":/)U&55/B.&%)&I)_"5/&%:&5&1K)"%7)</&5&1K,)</&V(&)U/%:/')\AP,) M(BC"'7S>"1%/'SD:'=)+a,)Xa333)A9%BC/%,)</'H"%K`)?>/#:/'%)4$#:'"5("%)A$#/$H,)\&BR/7)-"1);b,)>/5#CG&&5)FU,)_/':C,) >4)YbXY,)4$#:'"5("=))U&''/#G&%7/%B/)"%7)'/c$/#:#)I&')H":/'("5#)#C&$57)V/)"77'/##/7):&)!=*=)d/H"(5e)R"%&f"&'(=$S :&RK&="B=gGh) 7&33'+8+#1-.9)"#:/.8-;/#<) =-*'+)7>?)8$B5/&.7/)#/c$/%B/#)&I)G'(H/'#)$#/7)I&')"HG5(iB".&%)"%7)#/c$/%B(%1 =-*'+)7@?)<"#:'&G&7)#G/B(/#)"%7)#/c$/%B/#)$#/7)(%):C/)GCK5&1/%/.B)'/B&%#:'$B.&%)&I)/$:CK%/$'"%)B5"7/#)(%B5$7(%1) M(%1(B$5&(7/" A"$&.+)7>?)M46A\):'//#)V"#/7)&%)I&$'S1/%/)7":"#/:)T(:C&$:)&%/)&I):T&)H"g&')%$7(G5/$'"%)#$VB5"7/#e)d"h)8$7(V'"%BC(") d!"#$%&'()*+"%7),-.)/)&"h)"%7)dVh)_5/$'&V'"%BC&(7/")d0.-1('2("34$1*+"%7)5'/#$'/6*'3)"h= A"$&.+)7@?)O(H/SB"5(V'":/7)-J4DO):'//#)T(:C&$:)&%/)&I)I&$')B"5(V'".&%)G'(&'#e)d"h)i'#:)#G5(:)T(:C(%)J$&G(#:C&V'"%BC(")"%7) dVh)#G5(:#)V/:T//%)7"(%4$)1/)"%7)8/-"9'.)"%7)dBh)V/:T//%):)39)41.'6*)*)"%7):C'//)&:C/')'(%1(B$5(7#= A"$&.+)7B?)A'-"K/#):'//)V"#/7)&%)I&$'S1/%/)7":"#/:=
    [Show full text]
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • Lepidoptera, Noctuidae, Bryophilinae)
    A peer-reviewed open-access journal ZooKeys 310: 1–6 (2013) A new species of Stenoloba Staudinger, 1892 from China... 1 doi: 10.3897/zookeys.310.5125 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of Stenoloba Staudinger, 1892 from China (Lepidoptera, Noctuidae, Bryophilinae) Oleg Pekarsky1,†, Aidas Saldaitis2,‡ 1 H-1068 Budapest, Felsőerdősor u. 16-18, Hungary 2 Nature Research Centre, Akademijos str. 2, LT–08412 Vilnius-21, Lithuania † urn:lsid:zoobank.org:author:40DC027F-FCF3-4953-AC60-C071E814A768 ‡ urn:lsid:zoobank.org:author:1C168900-4B0F-4999-895D-FAB0B16B14C1 Corresponding author: Oleg Pekarsky ([email protected]) Academic editor: D. Lafontaine | Received 13 March 2013 | Accepted 12 June 2013 | Published 17 June 2013 urn:lsid:zoobank.org:pub:0E571669-1249-486C-853A-6232012767A9 Citation: Pekarsky O, Saldaitis A (2013) A new species of Stenoloba Staudinger, 1892 from China (Lepidoptera, Noctuidae, Bryophilinae). ZooKeys 310: 1–6. doi: 10.3897/zookeys.310.5125 Abstract A new species of Stenoloba from the olivacea species group, S. solaris, sp. n. (Lepidoptera, Noctuidae), is described from Yunnan, China. Illustrations of the male holotype and its genitalia are provided. A diagnostic comparison is made with Stenoloba albistriata Kononenko & Ronkay, 2000, Stenoloba olivacea (Wileman, 1914), and Stenoloba benedeki Ronkay, 2001 (Fig. 4). Keywords Lepidoptera, Noctuidae, Stenoloba, new species, China Introduction Stenoloba Staudinger, 1892 is an East Asian genus of the subfamily Bryophilinae. The first comprehensive revisions of the genus were published by Kononenko and Ronkay (2000, 2001) and Ronkay (2001) based on the East Palaearctic and northern Oriental species. Subsequently, several articles have increased taxonomic knowledge of this large and very diverse genus including most notably a 2010 publication by Behounek & Kononenko which listed 75 species arranged into 14 species-groups.
    [Show full text]
  • Database of Irish Lepidoptera. 1 - Macrohabitats, Microsites and Traits of Noctuidae and Butterflies
    Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Irish Wildlife Manuals No. 35 Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Ken G.M. Bond and Tom Gittings Department of Zoology, Ecology and Plant Science University College Cork Citation: Bond, K.G.M. and Gittings, T. (2008) Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies. Irish Wildlife Manual s, No. 35. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Cover photo: Merveille du Jour ( Dichonia aprilina ) © Veronica French Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2008 ISSN 1393 – 6670 Database of Irish Lepidoptera ____________________________ CONTENTS CONTENTS ........................................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 INTRODUCTION ................................................................................................................................................2 The concept of the database.....................................................................................................................2 The structure of the database...................................................................................................................2
    [Show full text]
  • A New Report of Craspedacusta Sowerbii (Lankester, 1880) in Southern Chile
    BioInvasions Records (2017) Volume 6, Issue 1: 25–31 Open Access DOI: https://doi.org/10.3391/bir.2017.6.1.05 © 2017 The Author(s). Journal compilation © 2017 REABIC Rapid Communication A new report of Craspedacusta sowerbii (Lankester, 1880) in southern Chile Karen Fraire-Pacheco1,3, Patricia Arancibia-Avila1,*, Jorge Concha2, Francisca Echeverría2, María Luisa Salazar2, Carolina Figueroa2, Matías Espinoza2, Jonathan Sepúlveda2, Pamela Jara-Zapata1,4, Javiera Jeldres-Urra5 and Emmanuel Vega-Román1,6 1Laboratorio de Microalgas y Ecofisiología, Master Program Enseñanza de las Ciencias Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Avda. Andrés Bello 720, Casilla 447, 3780000, Chillán, Chile 2Ingeniería en Recursos Naturales, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Avda. Andrés Bello 720, Casilla 447, 3780000, Chillán, Chile 3Facultad de Ciencias Básicas, Universidad Juárez del estado de Durango, Campus Gómez Palacio, Av. Universidad s/n, Fracc. Filadelfia, 35070, Gómez Palacio, Dgo, México 4Departamento de Ciencia Animal, Facultad Medicina Veterinaria, Universidad de Concepción, Avenida Vicente Méndez 595, 3780000, Chillán, Chile 5Master Program Ciencias Biológicas, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Avda. Andrés Bello 720, Casilla 447, 3780000, Chillán, Chile 6Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción-Concepción, Chile *Corresponding author E-mail: [email protected], [email protected] Received: 19 May 2016 / Accepted: 5 November 2016 / Published online: 9 December 2016 Handling editor: Ian Duggan Abstract Craspedacusta sowerbii (Lankester, 1880) is a cnidarian thought to originate from the Yangtze River valley in China. However, C. sowerbii is now an invasive species in freshwater systems worldwide.
    [Show full text]
  • Population Characteristics of the Limpet Patella Caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece)
    water Article Population Characteristics of the Limpet Patella caerulea (Linnaeus, 1758) in Eastern Mediterranean (Central Greece) Dimitris Vafidis, Irini Drosou, Kostantina Dimitriou and Dimitris Klaoudatos * Department of Ichthyology and Aquatic Environment, School of Agriculture Sciences, University of Thessaly, 38446 Volos, Greece; dvafi[email protected] (D.V.); [email protected] (I.D.); [email protected] (K.D.) * Correspondence: [email protected] Received: 27 February 2020; Accepted: 19 April 2020; Published: 21 April 2020 Abstract: Limpets are pivotal for structuring and regulating the ecological balance of littoral communities and are widely collected for human consumption and as fishing bait. Limpets of the species Patella caerulea were collected between April 2016 and April 2017 from two sites, and two samplings per each site with varying degree of exposure to wave action and anthropogenic pressure, in Eastern Mediterranean (Pagasitikos Gulf, Central Greece). This study addresses a knowledge gap on population characteristics of P. caerulea populations in Eastern Mediterranean, assesses population structure, allometric relationships, and reproductive status. Morphometric characteristics exhibited spatio-temporal variation. Population density was significantly higher at the exposed site. Spatial relationship between members of the population exhibited clumped pattern of dispersion during spring. Broadcast spawning of the population occurred during summer. Seven dominant age groups were identified, with the dominant cohort in the third-year
    [Show full text]
  • Fluid Interactions That Enable Stealth Predation by the Upstream-Foraging Hydromedusa Craspedacusta Sowerbyi
    Reference: Biol. Bull. 225: 60–70. (September 2013) © 2013 Marine Biological Laboratory Fluid Interactions That Enable Stealth Predation by the Upstream-Foraging Hydromedusa Craspedacusta sowerbyi K. LUCAS1, S. P. COLIN1,2,*, J. H. COSTELLO2,3, K. KATIJA4, AND E. KLOS5 1Biology, Roger Williams University, Bristol, Rhode Island 02809; 2Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; 3Biology Department, Providence College, Providence, Rhode Island 02918; 4Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543; and 5Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882 Abstract. Unlike most medusae that forage with tenta- coastal ecosystems, hydromedusae substantially affect zoo- cles trailing behind their bells, several species forage up- plankton prey populations (Larson, 1987; Purcell and Gro- stream of their bells using aborally located tentacles. It has ver, 1990; Matsakis and Conover, 1991; Purcell, 2003; been hypothesized that these medusae forage as stealth Jankowski et al., 2005). Understanding the factors underly- predators by placing their tentacles in more quiescent re- ing foraging can provide insight into the trophic impact of gions of flow around their bells. Consequently, they are able hydromedusae. Because propulsive mode, swimming per- to capture highly mobile, sensitive prey. We used digital formance, bell morphology, and prey selection are all particle image velocimetry (DPIV) to quantitatively charac-
    [Show full text]