A Theory of Inertia Based on Mach's Principle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exercises in Classical Mechanics 1 Moments of Inertia 2 Half-Cylinder
Exercises in Classical Mechanics CUNY GC, Prof. D. Garanin No.1 Solution ||||||||||||||||||||||||||||||||||||||||| 1 Moments of inertia (5 points) Calculate tensors of inertia with respect to the principal axes of the following bodies: a) Hollow sphere of mass M and radius R: b) Cone of the height h and radius of the base R; both with respect to the apex and to the center of mass. c) Body of a box shape with sides a; b; and c: Solution: a) By symmetry for the sphere I®¯ = I±®¯: (1) One can ¯nd I easily noticing that for the hollow sphere is 1 1 X ³ ´ I = (I + I + I ) = m y2 + z2 + z2 + x2 + x2 + y2 3 xx yy zz 3 i i i i i i i i 2 X 2 X 2 = m r2 = R2 m = MR2: (2) 3 i i 3 i 3 i i b) and c): Standard solutions 2 Half-cylinder ϕ (10 points) Consider a half-cylinder of mass M and radius R on a horizontal plane. a) Find the position of its center of mass (CM) and the moment of inertia with respect to CM. b) Write down the Lagrange function in terms of the angle ' (see Fig.) c) Find the frequency of cylinder's oscillations in the linear regime, ' ¿ 1. Solution: (a) First we ¯nd the distance a between the CM and the geometrical center of the cylinder. With σ being the density for the cross-sectional surface, so that ¼R2 M = σ ; (3) 2 1 one obtains Z Z 2 2σ R p σ R q a = dx x R2 ¡ x2 = dy R2 ¡ y M 0 M 0 ¯ 2 ³ ´3=2¯R σ 2 2 ¯ σ 2 3 4 = ¡ R ¡ y ¯ = R = R: (4) M 3 0 M 3 3¼ The moment of inertia of the half-cylinder with respect to the geometrical center is the same as that of the cylinder, 1 I0 = MR2: (5) 2 The moment of inertia with respect to the CM I can be found from the relation I0 = I + Ma2 (6) that yields " µ ¶ # " # 1 4 2 1 32 I = I0 ¡ Ma2 = MR2 ¡ = MR2 1 ¡ ' 0:3199MR2: (7) 2 3¼ 2 (3¼)2 (b) The Lagrange function L is given by L('; '_ ) = T ('; '_ ) ¡ U('): (8) The potential energy U of the half-cylinder is due to the elevation of its CM resulting from the deviation of ' from zero. -
Post-Newtonian Approximation
Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism Post-Newtonian Approximation Piotr Jaranowski Faculty of Physcis, University of Bia lystok,Poland 01.07.2013 P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Relativistic binary systems exist in nature, they comprise compact objects: neutron stars or black holes. These systems emit gravitational waves, which experimenters try to detect within the LIGO/VIRGO/GEO600 projects. -
Leibniz' Dynamical Metaphysicsand the Origins
LEIBNIZ’ DYNAMICAL METAPHYSICSAND THE ORIGINS OF THE VIS VIVA CONTROVERSY* by George Gale Jr. * I am grateful to Marjorie Grene, Neal Gilbert, Ronald Arbini and Rom Harr6 for their comments on earlier drafts of this essay. Systematics Vol. 11 No. 3 Although recent work has begun to clarify the later history and development of the vis viva controversy, the origins of the conflict arc still obscure.1 This is understandable, since it was Leibniz who fired the initial barrage of the battle; and, as always, it is extremely difficult to disentangle the various elements of the great physicist-philosopher’s thought. His conception includes facets of physics, mathematics and, of course, metaphysics. However, one feature is essential to any possible understanding of the genesis of the debate over vis viva: we must note, as did Leibniz, that the vis viva notion was to emerge as the first element of a new science, which differed significantly from that of Descartes and Newton, and which Leibniz called the science of dynamics. In what follows, I attempt to clarify the various strands which were woven into the vis viva concept, noting especially the conceptual framework which emerged and later evolved into the science of dynamics as we know it today. I shall argue, in general, that Leibniz’ science of dynamics developed as a consistent physical interpretation of certain of his metaphysical and mathematical beliefs. Thus the following analysis indicates that at least once in the history of science, an important development in physical conceptualization was intimately dependent upon developments in metaphysical conceptualization. 1. -
Kinematics, Kinetics, Dynamics, Inertia Kinematics Is a Branch of Classical
Course: PGPathshala-Biophysics Paper 1:Foundations of Bio-Physics Module 22: Kinematics, kinetics, dynamics, inertia Kinematics is a branch of classical mechanics in physics in which one learns about the properties of motion such as position, velocity, acceleration, etc. of bodies or particles without considering the causes or the driving forces behindthem. Since in kinematics, we are interested in study of pure motion only, we generally ignore the dimensions, shapes or sizes of objects under study and hence treat them like point objects. On the other hand, kinetics deals with physics of the states of the system, causes of motion or the driving forces and reactions of the system. In a particular state, namely, the equilibrium state of the system under study, the systems can either be at rest or moving with a time-dependent velocity. The kinetics of the prior, i.e., of a system at rest is studied in statics. Similarly, the kinetics of the later, i.e., of a body moving with a velocity is called dynamics. Introduction Classical mechanics describes the area of physics most familiar to us that of the motion of macroscopic objects, from football to planets and car race to falling from space. NASCAR engineers are great fanatics of this branch of physics because they have to determine performance of cars before races. Geologists use kinematics, a subarea of classical mechanics, to study ‘tectonic-plate’ motion. Even medical researchers require this physics to map the blood flow through a patient when diagnosing partially closed artery. And so on. These are just a few of the examples which are more than enough to tell us about the importance of the science of motion. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
A Conjecture of Thermo-Gravitation Based on Geometry, Classical
A conjecture of thermo-gravitation based on geometry, classical physics and classical thermodynamics The authors: Weicong Xu a, b, Li Zhao a, b, * a Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education of China, Tianjin 300350, China b School of mechanical engineering, Tianjin University, Tianjin 300350, China * Corresponding author. Tel: +86-022-27890051; Fax: +86-022-27404188; E-mail: [email protected] Abstract One of the goals that physicists have been pursuing is to get the same explanation from different angles for the same phenomenon, so as to realize the unity of basic physical laws. Geometry, classical mechanics and classical thermodynamics are three relatively old disciplines. Their research methods and perspectives for the same phenomenon are quite different. However, there must be some undetermined connections and symmetries among them. In previous studies, there is a lack of horizontal analogical research on the basic theories of different disciplines, but revealing the deep connections between them will help to deepen the understanding of the existing system and promote the common development of multiple disciplines. Using the method of analogy analysis, five basic axioms of geometry, four laws of classical mechanics and four laws of thermodynamics are compared and analyzed. The similarity and relevance of basic laws between different disciplines is proposed. Then, by comparing the axiom of circle in geometry and Newton’s law of universal gravitation, the conjecture of the law of thermo-gravitation is put forward. Keywords thermo-gravitation, analogy method, thermodynamics, geometry 1. Introduction With the development of science, the theories and methods of describing the same macro system are becoming more and more abundant. -
New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics Guagsan Yu* Harbin Macro, Dynamics Institute, P
Computa & tio d n ie a l l p M Yu, J Appl Computat Math 2015, 4:3 p a Journal of A t h f e o m l DOI: 10.4172/2168-9679.1000222 a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access New Rotational Dynamics- Inertia-Torque Principle and the Force Moment the Character of Statics GuagSan Yu* Harbin Macro, Dynamics Institute, P. R. China Abstract Textual point of view, generate in a series of rotational dynamics experiment. Initial research, is wish find a method overcome the momentum conservation. But further study, again detected inside the classical mechanics, the error of the principle of force moment. Then a series of, momentous the error of inside classical theory, all discover come out. The momentum conservation law is wrong; the newton third law is wrong; the energy conservation law is also can surpass. After redress these error, the new theory namely perforce bring. This will involve the classical physics and mechanics the foundation fraction, textbooks of physics foundation part should proceed the grand modification. Keywords: Rigid body; Inertia torque; Centroid moment; Centroid occurrence change? The Inertia-torque, namely, such as Figure 3 the arm; Statics; Static force; Dynamics; Conservation law show, the particle m (the m is also its mass) is a r 1 to O the slewing radius, so it the Inertia-torque is: Introduction I = m.r1 (1.1) Textual argumentation is to bases on the several simple physics experiment, these experiments pass two videos the document to The Inertia-torque is similar with moment of force, to the same of proceed to demonstrate. -
Lecture Notes for PHY 405 Classical Mechanics
Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion's Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary's University Department of Astronomy & Physics November 25, 2003 revised November 29 Chapter 11: Dynamics of Rigid Bodies rigid body = a collection of particles whose relative positions are fixed. We will ignore the microscopic thermal vibrations occurring among a `rigid' body's atoms. The inertia tensor Consider a rigid body that is composed of N particles. Give each particle an index α = 1 : : : N. Particle α has a velocity vf,α measured in the fixed reference frame and velocity vr,α = drα=dt in the reference frame that rotates about axis !~ . Then according to Eq. 10.17: vf,α = V + vr,α + !~ × rα where V = velocity of the moving origin relative to the fixed origin. Note that the particles in a rigid body have zero relative velocity, ie, vr,α = 0. 1 Thus vα = V + !~ × rα after dropping the f subscript 1 1 and T = m v2 = m (V + !~ × r )2 is the particle's KE α 2 α α 2 α α N so T = Tα the system's total KE is α=1 X1 1 = MV2 + m V · (!~ × r ) + m (!~ × r )2 2 α α 2 α α α α X X 1 1 = MV2 + V · !~ × m r + m (!~ × r )2 2 α α 2 α α α ! α X X where M = α mα = the system's total mass. P Now choose the system's center of mass R as the origin of the moving frame. -
A Short History of Physics (Pdf)
A Short History of Physics Bernd A. Berg Florida State University PHY 1090 FSU August 28, 2012. References: Most of the following is copied from Wikepedia. Bernd Berg () History Physics FSU August 28, 2012. 1 / 25 Introduction Philosophy and Religion aim at Fundamental Truths. It is my believe that the secured part of this is in Physics. This happend by Trial and Error over more than 2,500 years and became systematic Theory and Observation only in the last 500 years. This talk collects important events of this time period and attaches them to the names of some people. I can only give an inadequate presentation of the complex process of scientific progress. The hope is that the flavor get over. Bernd Berg () History Physics FSU August 28, 2012. 2 / 25 Physics From Acient Greek: \Nature". Broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves. The universe is commonly defined as the totality of everything that exists or is known to exist. In many ways, physics stems from acient greek philosophy and was known as \natural philosophy" until the late 18th century. Bernd Berg () History Physics FSU August 28, 2012. 3 / 25 Ancient Physics: Remarkable people and ideas. Pythagoras (ca. 570{490 BC): a2 + b2 = c2 for rectangular triangle: Leucippus (early 5th century BC) opposed the idea of direct devine intervention in the universe. He and his student Democritus were the first to develop a theory of atomism. Plato (424/424{348/347) is said that to have disliked Democritus so much, that he wished his books burned. -
NEWTON's FIRST LAW of MOTION the Law of INERTIA
NEWTON’S FIRST LAW OF MOTION The law of INERTIA INERTIA - describes how much an object tries to resist a change in motion (resist a force) inertia increases with mass INERTIA EXAMPLES Ex- takes more force to stop a bowling ball than a basket ball going the same speed (bowling ball tries more to keep going at a constant speed- resists stopping) Ex- it takes more force to lift a full backpack than an empty one (full backpack tries to stay still more- resists moving ; it has more inertia) What the law of inertia says…. AKA Newton’s First Law of Motion An object at rest, stays at rest Because the net force is zero! Forces are balanced (equal & opposite) …an object in motion, stays in motion Motion means going at a constant speed & in a straight line The net force is zero on this object too! NO ACCELERATION! …unless acted upon by a net force. Only when this happens will you get acceleration! (speed or direction changes) Forces are unbalanced now- not all equal and opposite there is a net force> 0N! You have overcome the object’s inertia! How does a traveling object move once all the forces on it are balanced? at a constant speed in a straight line Why don’t things just move at a constant speed in a straight line forever then on Earth? FRICTION! Opposes the motion & slows things down or GRAVITY if motion is in up/down direction These make the forces unbalanced on the object & cause acceleration We can’t get away from those forces on Earth! (we can encounter some situations where they are negligible though!) HOW can you make a Bowling -
Universal Gravitational Constant EX-9908 Page 1 of 13
Universal Gravitational Constant EX-9908 Page 1 of 13 Universal Gravitational Constant EQUIPMENT 1 Gravitational Torsion Balance AP-8215 1 X-Y Adjustable Diode Laser OS-8526A 1 45 cm Steel Rod ME-8736 1 Large Table Clamp ME-9472 1 Meter Stick SE-7333 INTRODUCTION The Gravitational Torsion Balance reprises one of the great experiments in the history of physics—the measurement of the gravitational constant, as performed by Henry Cavendish in 1798. The Gravitational Torsion Balance consists of two 38.3 gram masses suspended from a highly sensitive torsion ribbon and two1.5 kilogram masses that can be positioned as required. The Gravitational Torsion Balance is oriented so the force of gravity between the small balls and the earth is negated (the pendulum is nearly perfectly aligned vertically and horizontally). The large masses are brought near the smaller masses, and the gravitational force between the large and small masses is measured by observing the twist of the torsion ribbon. An optical lever, produced by a laser light source and a mirror affixed to the torsion pendulum, is used to accurately measure the small twist of the ribbon. THEORY The gravitational attraction of all objects toward the Earth is obvious. The gravitational attraction of every object to every other object, however, is anything but obvious. Despite the lack of direct evidence for any such attraction between everyday objects, Isaac Newton was able to deduce his law of universal gravitation. Newton’s law of universal gravitation: m m F G 1 2 r 2 where m1 and m2 are the masses of the objects, r is the distance between them, and G = 6.67 x 10-11 Nm2/kg2 However, in Newton's time, every measurable example of this gravitational force included the Earth as one of the masses. -
RELATIVISTIC GRAVITY and the ORIGIN of INERTIA and INERTIAL MASS K Tsarouchas
RELATIVISTIC GRAVITY AND THE ORIGIN OF INERTIA AND INERTIAL MASS K Tsarouchas To cite this version: K Tsarouchas. RELATIVISTIC GRAVITY AND THE ORIGIN OF INERTIA AND INERTIAL MASS. 2021. hal-01474982v5 HAL Id: hal-01474982 https://hal.archives-ouvertes.fr/hal-01474982v5 Preprint submitted on 3 Feb 2021 (v5), last revised 11 Jul 2021 (v6) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Relativistic Gravity and the Origin of Inertia and Inertial Mass K. I. Tsarouchas School of Mechanical Engineering National Technical University of Athens, Greece E-mail-1: [email protected] - E-mail-2: [email protected] Abstract If equilibrium is to be a frame-independent condition, it is necessary the gravitational force to have precisely the same transformation law as that of the Lorentz-force. Therefore, gravity should be described by a gravitomagnetic theory with equations which have the same mathematical form as those of the electromagnetic theory, with the gravitational mass as a Lorentz invariant. Using this gravitomagnetic theory, in order to ensure the relativity of all kinds of translatory motion, we accept the principle of covariance and the equivalence principle and thus we prove that, 1.