Full Text in Pdf Format

Total Page:16

File Type:pdf, Size:1020Kb

Full Text in Pdf Format Vol. 31: 259–270, 2016 ENDANGERED SPECIES RESEARCH Published November 28 doi: 10.3354/esr00768 Endang Species Res OPENPEN ACCESSCCESS A shift in foraging behaviour of beluga whales Delphinapterus leucas from the threatened Cumberland Sound population may reflect a changing Arctic food web Cortney A. Watt1,2,*, Jack Orr2, Steven H. Ferguson1,2 1Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada 2Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada ABSTRACT: Cumberland Sound, an inlet on Baffin Island, Nunavut, Canada, is undergoing changes in sea ice cover, which is affecting the marine food web. A small population of beluga whales Delphina pterus leucas inhabits Cumberland Sound year round and this population is cur- rently listed as threatened. Relatively little is known about the foraging behaviour of these belugas, but we expected that food web changes, primarily an increased abundance of capelin in the region, would have an impact on their diet and dive behaviour. We evaluated fatty acids in blubber sam- ples collected from subsistence-hunted belugas in Cumberland Sound from the 1980s to 2010, and analyzed satellite tag information from 7 belugas tagged in 2006 to 2008 to gain a better under- standing of their foraging behaviour. There was a change in the fatty acid profile of beluga blubber from the 1980s compared to the 1990s and 2000s. Specific fatty acids indicative of capelin and Arc- tic cod increased and decreased over time respectively, suggesting an increased consumption of capelin with a reduction in Arctic cod in summer in more recent years. Dive behaviour suggested different foraging tactics across seasons. Shallow short dives occurred in summer, which may indi- cate foraging on capelin, while deeper longer dives were made in autumn and winter, possibly indicating foraging on deeper prey such as Arctic cod and Greenland halibut. Potentially, autumn and winter are important foraging seasons for belugas, amassing energy reserves as blubber and creating a possible competitive conflict for resource use between belugas and expanding commer- cial fisheries. KEY WORDS: Diet · Fatty acids · Diving · Fisheries competition · Capelin · Arctic cod · Greenland halibut INTRODUCTION of the sound, and in winter belugas move towards the mouth of Cumberland Sound (Richard & Stewart Cumberland Sound is an inlet on the east coast of 2008). Whales in this population have been listed as Baffin Island, Nunavut, Canada. This region is a bio- threatened by the Committee on the Status of Endan- logically productive area and is an important summer gered Wildlife in Canada (COSEWIC 2004) as a feeding area for many animals (Cobb 2011). Beluga result of low population numbers (759 to 1960 indi- whales Delphinapterus leucas are ubiquitous in the viduals) (DFO 2005, Richard 2013, Marcoux et al. Arctic, and there is a small population that inhabits 2016). It is estimated there were >5000 belugas in Cumberland Sound year round (Richard & Stewart this population prior to large commercial hunting 2008). Whales spend summer in the northwestern catches between 1920 and 1960, while subsistence part of Cumberland Sound, particularly in Clearwa- hunts with managed quotas have been in place since ter Fiord. In autumn, whales are located in the centre the early 1980s with hunts of <50 individuals per year © C. A. Watt, S. H. Ferguson and Fisheries and Oceans Canada *Corresponding author: [email protected] 2016. Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are un restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 260 Endang Species Res 31: 259–270, 2016 (Mitchell & Reeves 1981, DFO 2002). There are also decline may be a result of an increased reliance on concerns regarding boat noise and competition with capelin as a primary prey resource. This also corre- Greenland halibut Reinhardtius hippoglossoides fish- lates with evidence suggesting that capelin had low eries, a potential prey of beluga whales (Heide- abundance in Cumberland Sound in the early 2000s, Jørgensen & Teilmann 1994). but had substantially increased in abundance by Climate change is also having impacts on the food 2011 (Ulrich 2013). web in Cumberland Sound. A reduction in sea ice in Along with chemical techniques such as stable iso- the Arctic has resulted in a northward shift of subarc- tope and fatty acid analysis, diet can also be assessed tic species that can compete with and displace Arctic by evaluating dive behaviour. Determining the species (Perovich & Richter-Menge 2009, Tivy et al. depths to which whales are diving can provide an 2011, McKinney et al. 2012). For example, in north- idea of where in the water column they are foraging ern Hudson Bay the incidence of capelin Mallotus and subsequently determine what common prey are villosus increased from the mid-1980s to the late available at those depths (Watt et al. 2015). No eval- 1990s, with a subsequent decrease in Arctic cod uation of dive behaviour with respect to bottom Boreo gadus saida (Gaston et al. 2003). Similarly, in bathymetry has been conducted on belugas from Cumberland Sound the food web has been changing Cumberland Sound; however, dive data from belu- and there has been an increase in capelin and a gas in other regions has been analyzed with respect reduction in Arctic cod (McKinney et al. 2012, Ulrich to bottom bathymetry. In the Canadian High Arctic, 2013). Specifically, capelin were absent in the stom- beluga whales have been tagged and researchers achs of Arctic char Salvelinus alpinus from the Cum- found characteristic deep dives to the bottom that berland Sound region in the early 2000s, but made they interpreted as foraging dives (Martin & Smith up the bulk of their diet in 2011, and char are known 1992, 1999, Martin et al. 1998). In Hudson Bay, 2 pop- to forage opportunistically, resulting in a diet that ulations of whales were found to have different dive reflects prey availability in their environment behaviour. One of the populations used the entire (Rikardsen et al. 2007, Ulrich 2013). These changes water column when close to shore but spent more will undoubtedly affect the diet and behaviour of the time close to the sea floor when offshore, while beluga whales inhabiting the region. another population seemed to use the entire water Beluga whales are considered to have a more column regardless of distance from shore (Bailleul et diverse diet than other Arctic cetaceans (Laidre et al. al. 2012). Other belugas tagged in Hudson Bay made 2008). Arctic cod B. saida tends to dominate diet for consistent dives to the bottom (Kingsley et al. 2001), belugas from the eastern Beaufort Sea (Loseto et al. suggesting foraging on prey in the benthos. In the 2009, Quakenbush et al. 2015) and the Canadian eastern Chukchi Sea, Citta et al. (2013) found no dif- High Arctic (Matley et al. 2015). Pacific herring Clu- ference in the depths to which beluga whales of dif- pea pallasii, tomcod Microgadus tomcod (Huntington ferent sexes or ages dove, and diving depths sug- & The Communities of Buckland, Elim, Koyuk, Point gested whales foraged primarily from 200 to 1000 m. Lay and Shaktoolik 1999), rainbow smelt Osmerus However, Hauser et al. (2015) did find differences in mordax, Arctic cod B. saida, and saffron cod Eleginus the diving behaviour of adult belugas versus imma- gracilis are common dietary items for different bel- ture whales from the eastern Chukchi Sea, with uga stocks from Alaska (Quakenbush et al. 2015), adults spending significantly more time at deeper while halibut R. hippoglossoides, shrimp Pandalus depths. Hauser et al. (2015) were also able to corre- borealis, and redfish Sebastes marinus were found in late beluga dives to the distribution of Arctic cod and beluga stomachs from Greenland whales (Heide-Jør- found that whales significantly targeted depths (200 gensen & Teilmann 1994). Relatively little is known to 300 m) with maximum cod abundance. about diet from beluga whales in Cumberland Dive behaviour was investigated from 1998 to 1999 Sound, but fatty acid analysis on a small number of in a few beluga whales (n = 13) from Cumberland samples (n = 15) from 1983 to 1987 suggests that Arc- Sound (Heide-Jørgensen et al. 2001). Although the tic cod was prevalent in diet (Kelley et al. 2010). Sta- authors did not evaluate diving in relation to bottom ble isotope analysis on skin and muscle tissues from bathymetry, they did determine that belugas from Cumberland Sound belugas from 2000 to 2010 sug- Cumberland Sound spend less time at the surface at gests that diet consists primarily of Arctic cod and night compared to day, with a trend towards more capelin M. villosus (Marcoux et al. 2012). Marcoux et night dives, suggesting this may be an important al. (2012) also found a significant decline in δ15N val- time for foraging (Heide-Jørgensen et al. 2001). In ues from 1982 to 2009 and they suggested this addition, when compared to whales from other Watt et al.: Cumberland Sound beluga diet and diving 261 regions in the Canadian High Arctic, Cumberland abdominal region was collected, frozen, and sent to Sound whales had higher dive rates and these rates the Freshwater Institute, Winnipeg, MB, where sam- did not seem to change seasonally, although only 4 ples were stored at −20°C. Blubber was subsampled tags recorded dive information in the winter and only from these larger cores; a cube of blubber from the for a short time (final transmission on 1 January 2000) deepest (closest to the muscle) and most interior por- (Heide-Jørgensen et al. 2001). There was annual tion of the core (which excluded all exterior blubber variability in dive rates for Cumberland Sound that may have been oxidized over time) was used for whales but this was based on a very small sample analysis.
Recommended publications
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • Geostrategy and Canadian Defence: from C.P. Stacey to a Twenty-First Century Arctic Threat Assessment
    Journal of Military and Strategic VOLUME 20, ISSUE 1 Studies Geostrategy and Canadian Defence: From C.P. Stacey to a Twenty-First Century Arctic Threat Assessment Ryan Dean and P. Whitney Lackenbauer1 “If some countries have too much history, we have too much geography.” -- Prime Minister William Lyon Mackenzie King, 1936 Geostrategy is the study of the importance of geography to strategy and military operations. Strategist Bernard Loo explains that “it is the influence of geography on tactical and operational elements of the strategic calculus that underpins, albeit subliminally, strategic calculations about the feasibility of the use of military force because the geographical conditions will influence policy-makers’ and strategic 1 An early version of some sections of this article appeared as “Geostrategical Approaches,” a research report for Defence Research and Development Canada (DRDC) project on the Assessment of Threats Against Canada submitted in 2015. We are grateful to the coordinators of that project, as well as to reviewers who provided feedback that has strengthened this article. Final research and writing was completed pursuant to a Department of National Defence MINDS Collaborative Network grant supporting the North American and Arctic Defence and Security Network (NAADSN). ©Centre of Military and Strategic Studies, 2019 ISSN : 1488-559X JOURNAL OF MILITARY AND STRATEGIC STUDIES planners’ perceptions of strategic vulnerabilities or opportunities.”2 By extension, the geographical size and location of a country are key determinants
    [Show full text]
  • Acoustic Monitoring of Beluga Whales (Delphinapterus Leucas): Spatio-Temporal Habitat
    Acoustic monitoring of beluga whales (Delphinapterus leucas): spatio-temporal habitat preference and geographic variation in Canadian populations By Karyn Victoria Booy A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE Department of Biological Sciences University of Manitoba Winnipeg. Manitoba, Canada JUNE, 2018 Copyright © 2018 by Karyn Booy Abstract Acoustic monitoring is an effective means by which to study cetaceans, such as beluga whales (Delphinapterus leucas), and can be useful in determining habitat preference and geographic variation among populations. Acoustic monitoring data were analyzed using a combination of automated detection and manual analysis to determine habitat preference of Cumberland Sound beluga in their summering range. Belugas were primarily detected in the northernmost site in Clearwater Fiord, with diel variation in call patterns at two separate sites in different years. No correlation was evident between tidal cycles and beluga detections. A second study examined geographic variation in simple contact calls (SCC’s) among four Canadian beluga populations. Results indicate variation in the measured parameters (duration, peak frequency and pulse repetition rate) among four populations and align with genetic variation previously described in the literature. These findings provide important information necessary for the conservation and management of beluga populations in Canada. i Acknowledgements I thank my supervisor Dr. Marianne Marcoux for her guidance and support throughout this project. You have been a fantastic mentor throughout this process and I could not have completed this project without your patient tutorials in both statistical and acoustic analyses.
    [Show full text]
  • A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W
    ARCTIC VOL. 60, NO. 1 (MARCH 2007) P. 1–6 A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W. PARK1 and DOUGLAS R. STENTON2 (Received 13 June 2006; accepted in revised form 31 July 2006) ABSTRACT. In 1999 a team of geologists discovered an archaeological site near Cape Southwest, Axel Heiberg Island. On the basis of its location and the analysis of two artifacts removed from the site, the discoverers concluded that it was a hastily abandoned campsite created by Hans Krüger’s German Arctic Expedition, which was believed to have disappeared between Meighen and Amund Ringnes islands in 1930. If the attribution to Krüger were correct, the existence of this site would demonstrate that the expedition got farther on its return journey to Bache Peninsula than previously believed. An archaeological investigation of the site by the Government of Nunavut in 2004 confirmed its tentative attribution to the German Arctic Expedition but suggested that it is not a campsite, but the remains of a deliberately and carefully constructed cache. The finds suggest that one of the three members of the expedition may have perished before reaching Axel Heiberg Island, and that the survivors, in order to lighten their sledge, transported valued but heavy items (including Krüger’s geological specimens) to this prominent and well-known location to cache them, intending to return and recover them at some later date. Key words: German Arctic Expedition, Hans Krüger, archaeology, geology, Axel Heiberg Island, Nunavut RÉSUMÉ. En 1999, une équipe de géologues a découvert un lieu d’importance archéologique près du cap Southwest, sur l’île Axel Heiberg.
    [Show full text]
  • Greenland Turbot Assessment
    6HFWLRQ STOCK ASSESSMENT OF GREENLAND TURBOT James N. Ianelli, Thomas K. Wilderbuer, and Terrance M. Sample 6XPPDU\ Changes to this year’s assessment in the past year include: 1. new summary estimates of retained and discarded Greenland turbot by different target fisheries, 2. update the estimated catch levels by gear type in recent years, and 3. new length frequency and biomass data from the 1998 NMFS eastern Bering Sea shelf survey. Conditions do not appear to have changed substantively over the past several years. For example, the abundance of Greenland turbot from the eastern Bering Sea (EBS) shelf-trawl survey has found only spotty quantities with very few small fish that were common in the late 1970s and early 1980s. The majority of the catch has shifted to longline gear in recent years. The assessment model analysis was similar to last year but with a slightly higher estimated overall abundance. We attribute this to a slightly improved fit to the longline survey data trend. The target stock size (B40%, female spawning biomass) is estimated at about 139,000 tons while the projected 1999 spawning biomass is about 110,000 tons. The adjusted yield projection from F40% computations is estimated at 20,000 tons for 1999, and increase of 5,000 from last year’s ABC. Given the continued downward abundance trend and no sign of recruitment to the EBS shelf, extra caution is warranted. We therefore recommend that the ABC be set to 15,000 tons (same value as last year). As additional survey information become available and signs of recruitment (perhaps from areas other than the shelf) are apparent, then we believe that the full ABC or increases in harvest may be appropriate for this species.
    [Show full text]
  • Stream Sediment and Stream Water OG SU Alberta Geological Survey (MITE) ICAL 95K 85J 95J 85K of 95I4674 85L
    Natural Resources Ressources naturelles Canada Canada CurrentCurrent and and Upcoming Upcoming NGR NGR Program Program Activities Activities in in British British Columbia, Columbia, NationalNational Geochemical Geochemical Reconnaissance Reconnaissance NorthwestNorthwest Territories, Territories, Yukon Yukon Territory Territory and and Alberta, Alberta, 2005-06 2005-06 ProgrProgrammeamme National National de de la la Reconnaissance Reconnaissance Géochimique Géochimique ActivitésActivités En-cours En-cours et et Futures Futures du du Programme Programme NRG NRG en en Colombie Colombie Britannique, Britannique, P.W.B.P.W.B. Friske, Friske,S.J.A.S.J.A. Day, Day, M.W. M.W. McCurdy McCurdy and and R.J. R.J. McNeil McNeil auau Territoires Territoires de du Nord-Ouest, Nord-Ouest, au au Territoire Territoire du du Yukon Yukon et et en en Alberta, Alberta, 2005-06 2005-06 GeologicalGeological Survey Survey of of Canada Canada 601601 Booth Booth St, St, Ottawa, Ottawa, ON ON 11 Area: Edéhzhie (Horn Plateau), NT 55 Area: Old Crow, YT H COLU Survey was conducted in conjunction with Survey was conducted in conjunction with and funded by IS M EUB IT B and funded by NTGO, INAC and NRCAN. NORTHWEST TERRITORIES R I the Yukon Geological Survey and NRCAN. Data will form A 124° 122° 120° 118° 116° B Alberta Energy and Utilities Board Data will form the basis of a mineral potential GEOSCIENCE 95N 85O the basis of a mineral potential evaluation as part of a 95O 85N evaluation as part of a larger required 95P 85M larger required Resource Assessment. OFFICE .Wrigley RESEARCH ANALYSIS INFORMATION Resource Assessment. .Wha Ti G 63° YUKON 63° Metals in the Environment (MITE) E Y AGS ESS Program: O E ESS Program: Metals in the Environment V .Rae-Edzo L R GSEOLOGICAL URVEY Survey Type: Stream Sediment and Stream Water OG SU Alberta Geological Survey (MITE) ICAL 95K 85J 95J 85K OF 95I4674 85L Survey Type: Stream Sediment, stream M Year of Collection: 2004 and 2005 A C K ENZI E R 2 62° I V water, bulk stream sediment (HMCs and KIMs).
    [Show full text]
  • Movements of a Deep-Water Fish: Establishing Marine Fisheries Management Boundaries in Coastal Arctic Waters
    University of Windsor Scholarship at UWindsor Biological Sciences Publications Department of Biological Sciences 2017 Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters Nigel E. Hussey University of Windsor K. J. Hedges A. N. Barkley M. A. Treble I. Peklova See next page for additional authors Follow this and additional works at: https://scholar.uwindsor.ca/biologypub Part of the Biology Commons Recommended Citation Hussey, Nigel E.; Hedges, K. J.; Barkley, A. N.; Treble, M. A.; Peklova, I.; Webber, D. M.; Ferguson, S. H.; Yurkowski, D. J.; Kessel, S. T.; Bedard, J. M.; and Fisk, A. T., "Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters" (2017). Ecological Applications, 27, 3, 687-704. https://scholar.uwindsor.ca/biologypub/813 This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Authors Nigel E. Hussey, K. J. Hedges, A. N. Barkley, M. A. Treble, I. Peklova, D. M. Webber, S. H. Ferguson, D. J. Yurkowski, S. T. Kessel, J. M. Bedard, and A. T. Fisk This article is available at Scholarship at UWindsor: https://scholar.uwindsor.ca/biologypub/813 INVITED FEATURE Ecological Applications, 27(3), 2017, pp. 687–704 © 2016 by the Ecological Society of America Movements of a deep- water fish: establishing marine fisheries management boundaries in coastal Arctic waters NIGEL E.
    [Show full text]
  • Marine Ecology Progress Series 508:211
    Vol. 508: 211–222, 2014 MARINE ECOLOGY PROGRESS SERIES Published August 4 doi: 10.3354/meps10874 Mar Ecol Prog Ser Seasonal migration, vertical activity, and winter temperature experience of Greenland halibut Reinhardtius hippoglossoides in West Greenland waters Jesper Boje1, Stefan Neuenfeldt1, Claus Reedtz Sparrevohn2, Ole Eigaard1, Jane W. Behrens1,* 1Technical University of Denmark, National Institute of Aquatic Resources, Kavalergaarden 6, 2920 Charlottenlund, Denmark 2Danish Pelagic Producers Organization, HC Andersens Boulevard 37, 1553 Copenhagen, Denmark ABSTRACT: The deep-water flatfish Greenland halibut Reinhardtius hippoglossoides (Walbaum) is common along the West Greenland coast. In the northwestern fjords, Greenland halibut is an important socio-economic resource for the Greenland community, but due to the deep and partly ice-covered environment, very little is known about its behavior and habitat characteristics. We tagged adult Greenland halibut in the waters off Ilulissat with electronic data storage tags that collected information on depth, temperature, and time. Although clear differences between individuals in migration and vertical behavior were present, we discovered a consistent seasonal migration from the relatively shallow-water Disko Bay area into the deep waters of the Ilulissat Icefjord, where the fish resided in the winter months before returning to Disko Bay. Vertical activity was pronounced at both locations, with fish covering vertical distances of up to 100 m within 15 min. During the winter months, the fish experienced temperatures between ca. 0 and 4°C, with most experiencing temperatures of 2 to 3°C. Irrespective of year and quarter of the year, the fish experienced warmer water and a broader range of temperatures when resident in Disko Bay (mean range 2.6°C) than when resident in the ice fjord (mean range 1.4°C).
    [Show full text]
  • Fixed Gear Recommendations for the Cumberland Sound Greenland Halibut Fishery
    Canadian Science Advisory Secretariat Central and Arctic Region Science Response 2008/011 FIXED GEAR RECOMMENDATIONS FOR THE CUMBERLAND SOUND GREENLAND HALIBUT FISHERY Context In a letter dated March 14, 2008, the Nunavut Wildlife Management Board (NWMB) requested Fisheries and Oceans Canada (DFO) Science advice on ways Greenland halibut fishing could be conducted in Cumberland Sound such that conservation concerns with non-directed by- catch of marine mammals and Greenland sharks are minimized or alleviated. On March 31, 2008, Fisheries and Aquaculture Management (FAM) submitted a request to Science for advice to address this request. Given the response was needed prior to the open-water fishing season (July 2008) and since the NWMB is the final advisory body for this request, DFO Central and Arctic Science determined that a Special Science Response Process would be used. Background The Cumberland Sound Greenland halibut (turbot) fishery began in 1986 and has been traditionally exploited during the winter months using longline gear set on the bottom through holes cut in the ice. Fishing typically takes place along a deep trench (>500 m) that extends toward Imigen Island and Drum Islands (Fig. 1). In 2005, a new management zone was established in Cumberland Sound with a Total Allowable Catch (TAC) of 500 t separate from the Northwest Atlantic Fisheries Organization (NAFO) Division 0B TAC. Catches in the winter fishery peaked in 1992 at 430 t then declined to levels below 100 t through the late 1990s and peaked again at 245 t in 2003. However, in recent years catches have declined significantly with harvests of 9 t, 70 t and 3 t for 2005, 2006 and 2007 respectively.
    [Show full text]
  • Viral Haemorrhagic Septicaemia Virus in Marine Fish and Its Implications
    Journal of Fish Diseases 2005, 28, 509–529 Review Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming – a review H F Skall1, N J Olesen1 and S Mellergaard2,* 1 Department of Poultry, Fish and Fur Animals, Danish Institute for Food and Veterinary Research, A˚rhus, Denmark 2 Department for Marine Ecology and Aquaculture, Fish Disease Laboratory, Danish Institute for Fisheries Research, Frederiksberg, Denmark marine fish to farmed fish are discussed, as are Abstract measures to prevent introduction of VHSV from the Viral haemorrhagic septicaemia virus (VHSV) has, marine environment to aquaculture. in recent decades, been isolated from an increasing Keywords: aquaculture, legislation, marine VHSV number of free-living marine fish species. So far, it isolates, review, viral haemorrhagic septicaemia has been isolated from at least 48 fish species from the virus (VHSV), wild marine fish. northern hemisphere, including North America, Asia and Europe, and fifteen different species inclu- ding herring, sprat, cod, Norway pout and flatfish Introduction from northern European waters. The high number of Viral haemorrhagic septicaemia (VHS) is one of the VHSV isolations from the Baltic Sea, Kattegat, most important viral diseases of salmonid fish in Skagerrak, the North Sea and waters around Scot- European aquaculture (Olesen 1998), causing esti- land indicate that the virus is endemic in these wa- mated losses of £40 million pounds per year in ters. The VHSV isolates originating from wild 1991 (Hill 1992). The economic consequences of marine fish show no to low pathogenicity to rainbow VHS outbreaks on two Danish fish farms in 2000 trout and Atlantic salmon, although several are producing approximately 165 tonnes rainbow trout, pathogenic for turbot.
    [Show full text]
  • Greenland Halibut
    Greenland halibut K. Nedreaas1 and O. Smirnov2: Stock characteristics, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides Walbaum) in the northeast Arctic 1Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway 2Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6 Knipovich Street, 183763 Murmansk, Russia Authorship equal Abstract Greenland halibut (Reinhardtius hippoglossoides (Walbaum)) are widely distributed over wide geographic areas of the Northeast Atlantic Ocean, with no break in the continuity of the distribution from the arctic Frans Josef Land and Novaya Zemlya archipelagos in the north and east to beyond the boreal Shetland Islands in the south. Although the entire Greenland halibut resource in the North Atlantic is genetically homogeneous, they comprise a single interbreeding stock in the Barents Sea and Norwegian Sea areas, which is known as the Northeast Arctic stock. In general, and for most of the year, larger fish become more abundant and smaller fish less abundant in progressively deeper water with peak abundance occurring over a depth range of 400-1 000 m. But during the spring and summer, the mature and bigger fish may be shallower. Greenland halibut in the Northeast Atlantic were observed to be most abundant in bottom temperatures mainly between 0º C and 4º C. The fishery for Greenland halibut in the Northeast Arctic was unregulated until 1992, although since 1995 catches have substantially exceeded those advised. The spawning stock size reached historically low levels during the 1990s and recruitment to the spawning stock remained uncertain. The stock is now showing clear signs of improvement, and is at present rebuilt to above the long-term average of the past 20 years.
    [Show full text]
  • Arctic Cephalopod Distributions and Their Associated Predatorspor 146 209..227 Kathleen Gardiner & Terry A
    Arctic cephalopod distributions and their associated predatorspor_146 209..227 Kathleen Gardiner & Terry A. Dick Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Keywords Abstract Arctic Ocean; Canada; cephalopods; distributions; oceanography; predators. Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals Correspondence illustrates their trophic importance. There has been considerable research on Terry A. Dick, Biological Sciences, University cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west of Manitoba, Winnipeg, Manitoba R3T 2N2, side of Greenland, where they are considered a potential fishery and are taken Canada. E-mail: [email protected] as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are doi:10.1111/j.1751-8369.2010.00146.x still incomplete. This study integrates most known locations of Arctic cepha- lopods in an attempt to locate potential areas of interest for cephalopods, and the predators that feed on them. International and national databases, museum collections, government reports, published articles and personal communica- tions were used to develop distribution maps. Species common to the Canadian Arctic include: G. fabricii, Rossia moelleri, R. palpebrosa and Bathypolypus arcticus. Cirroteuthis muelleri is abundant in the waters off Alaska, Davis Strait and Baffin Bay. Although distribution data are still incomplete, groupings of cephalopods were found in some areas that may be correlated with oceanographic variables. Understanding species distributions and their interactions within the ecosys- tem is important to the study of a warming Arctic Ocean and the selection of marine protected areas.
    [Show full text]