The Role of Arabidopsis Aminoalcoholphosphotransferase 1

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Arabidopsis Aminoalcoholphosphotransferase 1 University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 8-6-2015 The Role of Arabidopsis Aminoalcoholphosphotransferase 1 and 2 in Plant Development and Oil Production and Transcriptional Regulation of Seed Oil Accumulation by GLABRA2 Yu Liu University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Liu, Yu, "The Role of Arabidopsis Aminoalcoholphosphotransferase 1 and 2 in Plant Development and Oil Production and Transcriptional Regulation of Seed Oil Accumulation by GLABRA2" (2015). Dissertations. 14. https://irl.umsl.edu/dissertation/14 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. The Role of Arabidopsis Aminoalcoholphosphotransferase 1 and 2 in Plant Development and Oil Production and Transcriptional Regulation of Seed Oil Accumulation by GLABRA2 Yu Liu University of Missouri-St Louis Department of Biology Program in Cellular and Molecular Biology A Dissertation presented to the Graduate School of Arts and Sciences at the University of Missouri-St Louis in partial fulfillment of the requirements of Doctor of Philosophy in Cell and Molecular Biology August 2015 Advisory Committee Dr. Xuemin Wang Chairperson Dr. Elizabeth Kellogg Dr. Wendy Olivas Dr. Bethany Zolman ABSTRACT Vegetable oils are important commodities as human foods, animal feeds, renewable industrial feedstocks, and biofuels. Understanding how plant lipids are made will facilitate greatly the effort to increase seed oil content and production. Many biochemical and regulation events are involved in seed oil formation, including phospholipid metabolism and transcriptional regulation. In this thesis, I investigated 1) the role of aminoalcoholphosphotransferases (AAPTs) in phospholipid synthesis and plant development, 2) the effects of AAPTs on seed storage lipid production in Arabidopsis and the emerging oil crop Camelina, and 3) the interaction of the lipid mediator phosphatidic acid (PA) with GLABRA2 (GL2), a transcription factor that is a negative regulator in seed oil production. AAPTs are the enzymes catalyzing the last step of the Kennedy pathway to produce phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The Arabidopsis genome contains two AAPTs that I found are indispensable for plant reproduction and vegetative growth, based on the embryonic lethality phenotype of aapt1 aapt2 double knockout (KO) mutant and the retarded growth in AAPT RNA interference (RNAi) plants. Surprisingly, no change in PC level was observed in any of the mutant lines, while PE level decreased drastically in aapt1 KO, aapt1/aapt1 aapt2/AAPT2 and AAPT RNAi lines. The non-Kennedy pathway phospholipids, phosphatidylinositol (PI) and phosphatidylglycerol (PG), also showed mild decrease in AAPT RNAi plants. Detailed analysis revealed extensive lipid species changes. The PC shifted towards 34 carbon (C34) species, while PE species shifted towards C36. The possibility that C34 PC may be exported from chloroplast was not supported by the fatty acid positional analysis. The direct conversion of PI to PC by base-exchange mechanism was also not detected by the co-infiltration of PI and choline in Arabidopsis leaves, but an indirect conversion through lysolipids was suggested by the current results. Radiolabeling of PC and PE by infiltration of 3H- choline and 3H-ethanolamine suggested AAPT1 has more CPT activity than AAPT2 in leaves, while PC is the preferred product of both AAPTs in vivo. These results suggest AAPTs play an important role in plant lipid production and growth, while additional PC producing pathways exist to maintain a stable PC level that is crucial to plants. The fatty acid analysis showed that AAPT mutant lines had decreased oil content and increased long chain fatty acids, while AAPT seed specific overexpression (OE) lines had increased oil content. I also studied the significance of the interaction between PA and the homeodomain transcription factor GLABRA2 (GL2). I found GL2 interacts with PA strongly and specifically. The PA interaction region was mapped to the leucine-zipper region in the DNA-binding domain of GL2. The DNA-binding ability of GL2 was impaired by the interaction with PA. A chromatin immunoprecipitation (ChIP) assay identified possible GL2 targets, which were confirmed by gel mobility shift assay. The seed specific RNAi of GL2 increased oil content, but the mucilage in seed coat was not affected. These results suggest PA negatively regulates GL2, which is a potential master regulator of phospholipids metabolism and oil production. Overall, this work has improved our knowledge of phospholipid metabolism and its regulation by GL2, which will help us in improving lipid/oil production in plants. ACKNOWLEDGEMENT I spent the most important and unforgettable six years at University of Missouri-St. Louis. I have learnt tremendous amount of things as a researcher and as a human being. I am so grateful to meet and interact with the wonderful people here. First and foremost I want to thank my advisor Dr. Xuemin Wang. Without his support and encouragement, I cannot imagine I can complete my Ph. D. study. Dr. Wang gave me countless instructions yet still put his trust on me to complete the majority of my study and research. Dr. Wang inspired me, sometimes forced me to set specific goals and plans about my research, which proved to be invaluable to my development as a scientific researcher. I communicated regularly during writing my manuscript. I received tons of suggestions and improvements from Dr. Wang on the text to make the manuscript significantly better. My thesis committee members, Dr. Bethany Zolman, Dr. Elizabeth Kellogg and Dr. Wendy Olivas gave me great help on the direction of my research project, potential solutions on the difficulties I encountered during my research and proper data presentation. Their review of my dissertation proposal and dissertation are of huge help to the improvement of the content and data arrangement. They deserve my deepest appreciation. I am so thankful to the Department of Biology for accepting me as a Ph.D student. I want to thank all the staffs who are so helpful during my graduate study here. I also have benefited from the current and former members in our lab. They are great friends and provided their help and shared their knowledge with me selflessly. These include: Dr. Geliang Wang, Dr. Liang Guo, Dr. Maoyin Li, Dr. Sangchul Kim, Dr. Yong Zheng, Amanda Tawfall, Brian Fanella, Yuan Su, Xinliang Huang and many intern students. I am grateful to Dr. Ruth Welti and Mary Roth at Kansas State University for their help in lipid profiling and providing phospholipid standards. Finally, I must express my appreciation to my whole family, especially my mother and wife, without their support and sacrifice I could not have finish my project without much distraction. Thank little Adele to give me so much joy. Thank every people I have known during my study and wish them happy and healthy. ABBREVIATIONS AAPT, aminoalcoholphosphotrans- NPC, non-specific phospholipase C ferase OE, overexpression CCT, choline phosphate cytidylyl- PA, phosphatidic acid transferase PAH, phosphatidic acid hydrolase ChIP, chromatin immunoprecipitation PC, phosphatidylcholine CK, choline kinase PDAT, phospholipids: DAG CPT, cholinephosphotransferase acyltransferase DAG, diacylglycerol PE, phosphatidylethanolamine DGAT, DAG acyltransferase PG, phosphatidylglycerol DGDG, digalactosyldiacylglycerol PGP, phosphatidylglycerol-phosphate DGK, DAG kinase PI, phosphatidylinositol EPT, ethanolaminephosphotransferase PL, phospholipids ER, endoplasmic reticulum PLA, phospholipase A FA, Fatty acid PLC, phospholipase C G3P, phosphoglycerol, glycerol-3- PLD, phospholipase D phosphate PS, phosphatidylserine GL, glycolipids PSS, phosphatidylserine synthase GL2, GLABRA 2 qPCR, quantitative real-time PCR KO, knockout TAG, triacylglycerol LPP, lipid phosphate phosphatase WT, wild-type MGDG, monogalactosyldiacylglycerol TABLE OF CONTENTS Chapter 1. Background, goals and objectives ...................................................... 4 Introduction............................................................................................................... 4 Hypotheses and Goals ............................................................................................. 17 References ............................................................................................................... 20 Chapter 2. Role of Aminoalcoholphosphotransferases 1 and 2 in Phospholipid Homeostasis in Arabidopsis ............................................................................... 26 Abstract ................................................................................................................... 27 Introduction............................................................................................................. 27 Results ..................................................................................................................... 30 Disscussion .............................................................................................................. 50 Materials and Methods ........................................................................................... 59 References ..............................................................................................................
Recommended publications
  • Document Downloaded From: This Paper Must Be Cited As: the Final
    Document downloaded from: http://hdl.handle.net/10251/83362 This paper must be cited as: Fourquin ., C.; Ferrandiz Maestre, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist. 202(3):1001- 1013. doi:10.1111/nph.12703. The final publication is available at http://doi.org/10.1111/nph.12703 Copyright Wiley Additional Information 1 The essential role of NGATHA genes in style and stigma specification is widely 2 conserved across eudicots 3 Chloé Fourquin and Cristina Ferrándiz1 4 Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022 Valencia, Spain 5 6 1 For correspondence : 7 Cristina Ferrándiz 8 Instituto de Biología Molecular y Celular de Plantas, UPV-CSIC, 46022 Valencia, Spain 9 Tel. +34 963877892; Fax +34 963877859; e-mail: [email protected] 10 11 Total word count for the main body of the text: 5721 12 13 Word count for individual sections are as follows: 14 • Introduction, 947 15 • Materials and Methods, 765 16 • Results, 2035 17 • Discussion, 1868 18 • Acknowledgements, 106 19 20 The manuscript contains 6 figures (5 in color) and 1 table. 21 Supplementary material consists of 4 figures and 1 table. 22 23 SUMMARY 24 • Carpel development and evolution is a central issue for plant biology. The 25 conservation of genetic functions conferring carpel identity has been widely studied 26 in higher plants. However, although genetic networks directing the development of 27 characteristic features of angiosperm carpels such as stigma and style are 28 increasingly known in Arabidopsis thaliana, little information is available on the 29 conservation and diversification of these networks in other species.
    [Show full text]
  • Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis Vinifera L.): Insights Into the Roles in the Pollen Development Regulation
    G C A T T A C G G C A T genes Article Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation Oscar Arrey-Salas 1,* , José Carlos Caris-Maldonado 2, Bairon Hernández-Rojas 3 and Enrique Gonzalez 1 1 Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile; [email protected] 2 Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, 3550000 Pencahue, Chile; [email protected] 3 Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile; [email protected] * Correspondence: [email protected] Abstract: Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine Citation: Arrey-Salas, O.; remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte Caris-Maldonado, J.C.; development, we performed a genome-wide identification and characterization of genes encoding Hernández-Rojas, B.; Gonzalez, E. ZFP (VviZFP family).
    [Show full text]
  • Genome-Wide Analysis of the AP2/ERF Superfamily in Apple and Transcriptional Evidence of ERF Involvement in Scab Pathogenesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ- toulouse.fr/ Eprints ID: 11480 To link to this article : DOI:10.1016/j.scienta.2012.12.017 URL: http://dx.doi.org/10.1016/j.scienta.2012.12.017 To cite this version: Girardi, Cesar Luis and Rombaldi, César Valmor and Dal Cero, Joceani and Nobile, Paula M. and Laurent, François and Bouzayen, Mondher and Quecini, Vera Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis. (2013) Scientia Horticulturae, vol. 151. pp. 112-121. ISSN 0304-4238 Any correspondence concerning this service should be sent to the repository administrator: [email protected] ! Genome•wide analysis of the AP2 /ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis a b b c c César Luís Girardi , César Valmor Rombaldi , Joceani Dal Cero , Paula M. Nobile , Franc¸ ois Laurens , d a,∗ Mondher Bouzayen , Vera Quecini a Embrapa Uva e Vinho, Caixa Postal 130, 95700•000 Bento Gonc¸ alves, RS, Brazil b ◦ Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Departamento de Ciência e Tecnologia Agroindustrial, s/n caixa postal 354, 96010•900 Pelotas, RS, Brazil c UMR 1259 Génétique et Horticulture (GenHort), Angers, France d UMR 990, Génomique et Biotechnologie des Fruits, INP, ENSAT, INRA, F•31320 Castanet Tolosan, France a b s t r a c t The APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) superfamily of transcriptional regulators is involved in several growth, development and stress responses processes in higher plants.
    [Show full text]
  • Gene Family in Panax Ginseng CA Meyer
    bioRxiv preprint doi: https://doi.org/10.1101/850164; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Structural variation, functional differentiation and 2 expression characteristics of the AP2/ERF gene family and 3 its response to cold stress and methyl jasmonate in Panax 4 ginseng C.A. Meyer 5 Short title: Structural and functional Analysis of AP2/ERF 6 gene family in Panax ginseng C.A. Meyer 1,2 1 1 1 1,2 1,2 7 Jing Chen ☯,Yuanhang Zhou ☯, Qi Zhang , Li Li , Chunyu Sun , Kangyu Wang , 8 Yanfang Wang2,3, Mingzhu Zhao1,2, Hongjie Li1, Yilai Han1, Ping Chen1, Ruiqi Li1, 9 Jun Lei1, Meiping Zhang 1,2*, and Yi Wang 1,2* 10 1 College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 11 Changchun, Jilin 130118, China. 12 2 Research Center for Ginseng Genetic Resources Development and Utilization, 13 2888 Xincheng Street, Changchun, Jilin 130118, China. 14 3 College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 15 Xincheng Street, Changchun 130118, Jilin, China. 16 17 ☯These authors contributed equally to this work. 18 Correspondence should be addressed to [email protected] and 19 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/850164; this version posted November 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • An Updated Overview on the Regulation of Seed Germination
    An Updated Overview on the Regulation of Seed Germination Table S1. Selected recent reviews on seed germination-related aspects. Subject (Keywords) References Generalists ABA, Arabidopsis, dormancy, germination, GA, seed maturation. [3] GAs and ABA GAs, ABA, hormone signaling, seed germination, abiotic stresses, crosstalk of [10] hormone signaling. DELLAs, GAs, hormone crosstalk, phenotypic plasticity, plant development. [20] DELLA, GRAS, GAs, Arabidopsis, rice, GID1, crosstalk, [22] ABA, ABA synthesis, ABA signaling, ABA response. [35] PYR1, RCAR, ABA transduction, SnRK2, PP2C. [42] ABI5, abiotic stress response, phytohormone crosstalk, ABA, brassinosteroids, GAs, [81] jasmonates, posttranslational modification. Hormones transport GA biosynthesis, GA action, GA transport, evolution, Gibberella fujikuroi. [48] GA, plant hormone, hormone transport and localization, GA transporters, NPF, [49] SWEET. ABA; guard cell; transporter; water stress. [50] GA metabolism, GA transport, GA gradients, cellular growth. [51] Plant NRT1/PTR transporters, phylogenetic relationships, substrates. [72] Glucosinolate, hormone, nitrate, nitrite, peptide, transporter. [73] NIN-like protein (NLP), nitrate, nitrate-responsive gene expression, post- translational regulation, transcription factor, [77] nitrate signalling. Light regulation PIF signaling, Phytochromes, plant development. [109] Chromatin dynamics Shoot apical meristem, quiescent center, floral homeotic gene, polycomb repression, [162] seed development, dormancy, germination and greening. DNA methylation,
    [Show full text]
  • Roles of Wrky Proteins in Mediating the Crosstalk of Hormone Signaling Pathways: an Approach Integrating Bioinformatics and Experimental Biology
    UNLV Retrospective Theses & Dissertations 1-1-2006 Roles of Wrky proteins in mediating the crosstalk of hormone signaling pathways: An approach integrating bioinformatics and experimental biology Zhen Xie University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Xie, Zhen, "Roles of Wrky proteins in mediating the crosstalk of hormone signaling pathways: An approach integrating bioinformatics and experimental biology" (2006). UNLV Retrospective Theses & Dissertations. 2711. http://dx.doi.org/10.25669/0cw1-sipg This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. ROLES OF WRKY PROTEINS IN MEDIATING THE CROSSTALK OF HORMONE SIGNALING PATHWAYS: AN APPROACH INTEGRATING BIOINFORMATICS AND EXPERIMENTAL BIOLOGY by Zhen Xie Bachelor of Sciences Shandong Agricultural University 1998 Master of Sciences Shandong Agricultural University 2001 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biological Sciences Department of Biological Sciences College of Sciences Graduate College University of Nevada, Las Vegas December 2006 Reproduced with permission of the copyright owner.
    [Show full text]
  • LEAFY COTYLEDON2 Encodes a B3 Domain Transcription Factor That Induces Embryo Development
    LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development Sandra L. Stone*†, Linda W. Kwong*†, Kelly Matsudaira Yee*, Julie Pelletier*, Loı¨c Lepiniec‡, Robert L. Fischer§, Robert B. Goldberg¶, and John J. Harada*ʈ *Section of Plant Biology, Division of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616; ‡Seed Biology Laboratory, Laboratoire de Biologie des Semences, Institut National de la Recherche Agronomique, Route de St-Cyr, 78026 Versailles, France; §Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and ¶Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90024-1606 Contributed by Robert B. Goldberg, August 6, 2001 The Arabidopsis LEAFY COTYLEDON2(LEC2) gene is a central Early in embryogenesis, LEC genes are required to specify embryonic regulator that serves critical roles both early and late suspensor cell fate and cotyledon identity (12–16). Late in during embryo development. LEC2 is required for the maintenance embryogenesis, LEC genes are needed during the maturation of suspensor morphology, specification of cotyledon identity, phase for the acquisition of desiccation tolerance and the progression through the maturation phase, and suppression of expression of many maturation-specific genes (13–17). Consis- premature germination. We cloned the LEC2 gene on the basis of tent with the finding that conditions that promote maturation its chromosomal position and showed that the predicted polypep- suppress germination (6), lec mutant embryos prematurely ac- tide contains a B3 domain, a DNA-binding motif unique to plants tivate the postgermination program (13, 15, 16, 18). Thus, LEC that is characteristic of several transcription factors.
    [Show full text]
  • Arabidopsis Thaliana NGATHA1 Transcription Factor Induces ABA Biosynthesis by Activating NCED3 Gene During Dehydration Stress
    Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress Hikaru Satoa,1, Hironori Takasakia,2, Fuminori Takahashia, Takamasa Suzukib, Satoshi Iuchic, Nobutaka Mitsudad, Masaru Ohme-Takagid,e, Miho Ikedad,e, Mitsunori Seof, Kazuko Yamaguchi-Shinozakig, and Kazuo Shinozakia,1 aGene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, 305-0074 Ibaraki, Japan; bCollege of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Aichi, Japan; cExperimental Plant Division, BioResource Research Center, RIKEN, Tsukuba, 305-0074 Ibaraki, Japan; dPlant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566 Ibaraki, Japan; eGraduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Saitama, Japan; fDormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Kanagawa, Japan; and gLaboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 113-8657 Tokyo, Japan Edited by Julian I. Schroeder, Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, and approved October 1, 2018 (received for review July 10, 2018) The plant hormone abscisic acid (ABA) is accumulated after the NCED3 gene is highly induced in the vascular tissues by drought stress and plays critical roles
    [Show full text]
  • RKD Genes: a Novel Transcription Factor Family Involved in the Female Gametophyte Development of Arabidopsis and Wheat
    RKD genes: a novel transcription factor family involved in the female gametophyte development of Arabidopsis and wheat Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) Martin-Luther-Universität Halle-Wittenberg von Dávid Kőszegi geboren am 20. Februar 1979 in Budapest, Ungarn Gutachter : 1. Prof. Dr. Gerd Jürgens 2. Prof. Dr. Gunter Reuter 3. Prof. Dr. Ulrich Wobus Halle (Saale), den 25. September 2008 To my wife and my family „Mert az őssejtig vagyok minden ős- Az Ős vagyok, mely sokasodni foszlik: Apám- s anyámmá válok boldogon, S apám, anyám maga is kettéoszlik S én lelkes Eggyé így szaporodom!” “that I am every parent in the boundless succession to the primal lonely cell. till I become my father and mother, then father splits and mother, procreating the multiplying me and none other!” (Dunánál, By the Danube, Attila József, Hungarian poet, 1905-1937) ii Table of contents List of abbreviations vi 1. Introduction 1 1.1. Alternation of generations – speciality of plants: gametophyte proliferation 1 1.2. Development of the female sexual organs 1 1.3. Apomixis - avoidance of sexuality 4 1.4. Genetic analysis of plant reproduction 5 1.4.1. The sexual pathway 5 1.4.2. The apomictic pathway 7 1.5. The Salmon system of wheat 8 1.6. Main objectives 9 2. Materials and methods 11 2.1. Plant material 11 2.2. Cloning methods 11 2.3. Arabidopsis transformation 11 2.4. cDNA array hybridisation 11 2.5. RT-PCR 12 2.6.
    [Show full text]
  • Transcriptional Regulation in Plants: the Importance of Combinatorial Control
    Plant Physiol. (1998) 118: 1111–1120 Update on Gene Regulation Transcriptional Regulation in Plants: The Importance of Combinatorial Control Karam B. Singh Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095–1606 GLOSSARY OF TERMS plant-defense/stress response. A major level at which gene expression is regulated is the initiation of transcription, Combinatorial control: use of a discrete number of tran- and this is reflected in the percentage of the genome ded- scription factors in different combinations to give rise to icated to transcription factors in plants and other eu- a wide spectrum of expression patterns. karyotes. For example, an analysis of 1.9 Mb of Arabidopsis Enhanceosome: a higher-order nucleoprotein complex that genomic sequence from chromosome 4 revealed that about is formed by the binding of a specific combination of 15% of the genes with predicted or known functions were transcription factors to the transcriptional regulatory se- involved in transcription, a percentage similar to what has quences of a particular gene. been found in other eukaryotes (Bevan et al., 1998). General transcription factors: components of the Pol II In eukaryotic cells, genomic DNA is complexed with transcription-initiation complex that are thought to be proteins to form chromatin. One of chromatin’s major roles common to all Pol II promoters. is to facilitate the packaging of DNA in the nucleus, but the Holoenzyme: a large protein complex that is preformed structure of chromatin also leads to a general suppression off of the DNA and contains Pol II and many of the of gene activity.
    [Show full text]
  • MADS Interactomics
    MADS interactomics Towards understanding the molecular mechanisms of plant MADS-domain transcription factor function Cezary Smaczniak MADS interactomics Towards understanding the molecular mechanisms of plant MADS-domain transcription factor function Cezary Smaczniak Thesis Committee Promotor Prof. dr. ir. G.C. Angenent Personal chair at the Laboratory of Molecular Biology Wageningen University Co-promotor Dr. K. Kaufmann Assistant Professor, Laboratory of Molecular Biology Wageningen University Other members Prof. dr. ir. B.J.G. Scheres, Wageningen University Prof. dr. B. Davies, University of Leeds, United Kingdom Dr. C.C. Carles, Joseph Fourier University, Grenoble, France Dr. ir. J.J.M. Vervoort, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. MADS interactomics Towards understanding the molecular mechanisms of plant MADS-domain transcription factor function Cezary Dominik Smaczniak Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 16 January 2013 at 1.30 p.m. in the Aula. Cezary Dominik Smaczniak MADS interactomics. Towards understanding the molecular mechanisms of plant MADS- domain transcription factor function. 178 pages Thesis, Wageningen University, Wageningen, NL (2013). With references, with summaries in Dutch, English and Polish.
    [Show full text]
  • Transcriptomic Analysis and Specific Expression of Transcription Factor
    International Journal of Molecular Sciences Article Transcriptomic Analysis and Specific Expression of Transcription Factor Genes in the Root and Sporophyll of Dryopteris fragrans (L.) Schott Lingling Chen, Dongrui Zhang, Chunhua Song, Hemeng Wang, Xun Tang and Ying Chang * College of Life Sciences, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China; [email protected] (L.C.); [email protected] (D.Z.); [email protected] (C.S.); [email protected] (H.W.); [email protected] (X.T.) * Correspondence: [email protected] Received: 28 July 2020; Accepted: 28 September 2020; Published: 2 October 2020 Abstract: Background: Dryopteris fragrans, which is densely covered with glandular trichomes, is considered to be one of the ferns with the most medicinal potential. The transcriptomes from selected tissues of D. fragrans were collected and analyzed for functional and comparative genomic studies. The aim of this study was to determine the transcriptomic characteristics of wild D. fragrans sporangium in tissues from the SR (root), SL (sporophyll), and TRL (sporophyll with glandular trichomes removed). Results: Cluster analysis identified genes that were highly expressed in an organ-specific manner according to read mapping, feature counting, and normalization. The functional map identified gene clusters that can uniquely describe the function of each tissue. We identified a group of three tissue-specific transcription factors targeting the SL, SR, and TRL. In addition, highly expressed transcription factors (TFs) were found in each tissue-specific gene cluster, where ERF and bHLH transcription factors were the two types showing the most distinct expression patterns between the three different tissues. The specific expression of transcription factor genes varied between the different types of tissues.
    [Show full text]