Henry J. Egglishaw Thesis, for the Degree of Ph. D. September, 1958
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and Waterlogged Fly Pupae, and Other Insects and Arthropods
Southampton French Quarter SOU1382 Specialist Report Download E9 Southampton French Quarter 1382 Specialist Report Download E9: Mineralised and waterlogged fly pupae, and other insects and arthropods By David Smith Methods In addition to samples processed specifically for the analysis of insect remains, insect and arthropod remains, particularly mineralised pupae and puparia, were also contained in the material sampled and processed for plant macrofossil analysis. These were sorted out from archaeobotanical flots and heavy residues fractions by Dr. Wendy Smith (Oxford Archaeology) and relevant insect remains were examined under a low-power binocular microscope by Dr. David Smith. The system for ‘intensive scanning’ of faunas as outlined by Kenward et al. (1985) was followed. The Coleoptera (beetles) present were identified by direct comparison to the Gorham and Girling Collections of British Coleoptera. The dipterous (fly) puparia were identified using the drawings in K.G.V. Smith (1973, 1989) and, where possible, by direct comparison to specimens identified by Peter Skidmore. Results The insect and arthropod taxa recovered are listed in Table 1. The taxonomy used for the Coleoptera (beetles) follows that of Lucht (1987). The numbers of individual insects present is estimated using the following scale: + = 1-2 individuals ++ = 2-5 individuals +++ = 5-10 individuals ++++ = 10-20 individuals +++++ = 20- 100individuals +++++++ = more than 100 individuals Discussion The insect and arthropod faunas from these samples were often preserved by mineralisation with any organic material being replaced. This did make the identification of some of the fly pupae, where some external features were missing, problematic. The exceptions to this were samples 108 (from a Post Medieval pit), 143 (from a High Medieval pit) and 146 (from an Anglo-Norman well) where the material was partially preserved by waterlogging. -
Life Cycle and Kelp Consumption of Paractora Dreuxi Mirabilis (Diptera: Helcomyzidae): a Primary Decomposer of Stranded Kelp on Marion Island
18 S. Afr. T. Nav. Antarkt., Deel 14, 1984 1 Life cycle and kelp consumption of Paractora dreuxi mirabilis (Diptera: Helcomyzidae): A primary decomposer of stranded kelp on Marion Island J.E. Crafford Department of Entomology University of Pretoria, Hatfield , Pretoria 0083 Wrack beds of the intertidal kelp Durvillea antarctica (Cham.) Apetenus liroralis and Paractora dreuxi mirabilis. are closely Har. on Marion Island (46°54' S, 37"45' E) sustain large kelp fly associated with wrack beds and decomposing kelp. populatior.s. Paractora dreuxi mirabilis (Seguy) is a primary Little is known about the nutrient and energy pathways decomposer of stranded Durv11lea with larvae reaching a operative in the littoral zone on Marion Island (Smith 1977). biomass of2 gper kg ofdecomposing kelp (wet mass). At 10°C Fronds of Durvillea antarccica, an epilitic phaeophyte Paractora completes its life cycle in 80-120 days. Egg, larval and abounding in the intertidal zone, continuously wash up on pupal stages last 4, 60 and 40 days respectively. Larvae eat 0,5 beaches around the island. After heavy seas fronds frequently rimes their own dry mass in kelp per day. They attain an indivi pile up into large and dense wrack beds. Paractora larvae are dual live mass of up to JOO mg. The feeding and burrowing the major decomposers of beached Durvillea, representing by activity of larvae probably enhance microbial decay ofbeached far the greatest biomass of decomposers in beached kelp kelp. Paractora larvae are preyed on by vertebrate insectivores (Crafford, unpublished) and constituting an easily explo1table and probably form an important link in nutrient and energy localised food resource for secondary consumers such as the chains in the littoral zone on Marion Island. -
Superfamilies Tephritoidea and Sciomyzoidea (Dip- Tera: Brachycera) Kaj Winqvist & Jere Kahanpää
20 © Sahlbergia Vol. 12: 20–32, 2007 Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Dip- tera: Brachycera) Kaj Winqvist & Jere Kahanpää Winqvist, K. & Kahanpää, J. 2007: Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Diptera: Brachycera). — Sahlbergia 12:20-32, Helsinki, Finland, ISSN 1237-3273. Another part of the updated checklist of Finnish flies is presented. This part covers the families Lonchaeidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulididae, Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyii- dae, Sciomyzidae and Sepsidae. Eight species are recorded from Finland for the first time. The following ten species have been erroneously reported from Finland and are here deleted from the Finnish checklist: Chaetolonchaea das- yops (Meigen, 1826), Earomyia crystallophila (Becker, 1895), Lonchaea hirti- ceps Zetterstedt, 1837, Lonchaea laticornis Meigen, 1826, Prochyliza lundbecki (Duda, 1924), Campiglossa achyrophori (Loew, 1869), Campiglossa irrorata (Fallén, 1814), Campiglossa tessellata (Loew, 1844), Dioxyna sororcula (Wie- demann, 1830) and Tephritis nigricauda (Loew, 1856). The Finnish records of Lonchaeidae: Lonchaea bruggeri Morge, Lonchaea contigua Collin, Lonchaea difficilis Hackman and Piophilidae: Allopiophila dudai (Frey) are considered dubious. The total number of species of Tephritoidea and Sciomyzoidea found from Finland is now 262. Kaj Winqvist, Zoological Museum, University of Turku, FI-20014 Turku, Finland. Email: [email protected] Jere Kahanpää, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland. Email: kahanpaa@iki.fi Introduction new millennium there was no concentrated The last complete checklist of Finnish Dipte- Finnish effort to study just these particular ra was published in Hackman (1980a, 1980b). groups. Consequently, before our work the Recent checklists of Finnish species have level of knowledge on Finnish fauna in these been published for ‘lower Brachycera’ i.e. -
1659 2012-10323.Pdf
Zootaxa 3478: 553–569 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:EC0F0A87-8BF4-42C6-8561-0AC2ED45E00F The new genus Acrocephalomyia, and a new species of Ropalomera from Costa Rica, with additional records for other Mesoamerican species (Diptera: Ropalomeridae) SERGIO IBÁÑEZ-BERNAL 1 & VICENTE HERNÁNDEZ-ORTIZ 2 1Red Ambiente y Sustentabilidad, Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, México. E–mail: [email protected] 2Red Interacciones Multitróficas, Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351, El Haya, Xalapa, 91070, Veracruz, México. E–mail: [email protected] Abstract New taxa of the family Ropalomeridae from Costa Rica are described, and additional records of ropalomerid flies from Mexico and Central America are provided. The new genus and species Acrocephalomyia zumbadoi can be easily distin- guished from all other ropalomerid genera by the following combination of characters: angular forward projection of head, absence of ocelli, flat face, bare arista, long scutum, and scutellum triangular-shaped and dorsally flattened with only one pair of apical bristles with bases approximated. The new species Ropalomera aterrima can be recognized from congeners by remarkable differences of the head, the shape of the scutellum, the absence of scutal vittae, fumose wings, and by the black coloration of the body, ocellar bristles large, one postpronotal bristle, scutum without pollinose vittae and flat scutel- lum. Lenkokroeberia chryserea Prado and Kroeberia fuliginosa Lindner are newly confirmed for Costa Rica. -
Genetic Divergence and Phenotypic Plasticity Contribute to Variation in Cuticular Hydrocarbons in the Seaweed Fly Coelopa Frigida
Received: 23 June 2019 | Revised: 19 August 2019 | Accepted: 26 August 2019 DOI: 10.1002/ece3.5690 ORIGINAL RESEARCH Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida Emma Berdan1 | Swantje Enge2,3 | Göran M. Nylund3 | Maren Wellenreuther4,5 | Gerrit A. Martens6 | Henrik Pavia3 1Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden Abstract 2Institute for Chemistry and Biology of the Cuticular hydrocarbons (CHCs) form the boundary between insects and their envi‐ Marine Environment, Carl‐von‐Ossietzky ronments and often act as essential cues for species, mate, and kin recognition. This University Oldenburg, Wilhelmshaven, Germany complex polygenic trait can be highly variable both among and within species, but 3Department of Marine Sciences – the causes of this variation, especially the genetic basis, are largely unknown. In this Tjärnö, University of Gothenburg, Strömstad, Sweden study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, 4Plant & Food Research Limited, Nelson, Coelopa frigida, and found that composition was affected by both genetic (sex and New Zealand population) and environmental (larval diet) factors. We subsequently conducted be‐ 5School of Biological Sciences, The havioral trials that show CHCs are likely used as a sexual signal. We identified general University of Auckland, Auckland, New Zealand shifts in CHC chemistry as well as individual compounds and found that the meth‐ 6 Institute for Zoology, University of ylated compounds, mean chain length, proportion of alkenes, and normalized total Hamburg, Hamburg, Germany CHCs differed between sexes and populations. We combined these data with whole Correspondence genome resequencing data to examine the genetic underpinnings of these differ‐ Emma Berdan, Department of Marine Sciences, University of Gothenburg, Box ences. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
On Adult Size and Male Mating Success in the Seaweed Fly, Coelopa Frigida A
Heredity (1982), 49 (1),51—62 0018-067X/82/0507005 1$02.OO 1982.The Genetical Society of Great Britain THEEFFECTS OF A CHROMOSOMAL INVERSION ON ADULT SIZE AND MALE MATING SUCCESS IN THE SEAWEED FLY, COELOPA FRIGIDA A. K. BUTLIN, I. L. READ and 1. H. DAY Department of Genetics, University of Nottingham, University Park, Nottingham, NG72RD Received4.iii.82 SUMMARY An association is reported between the a//3inversionpolymorphism on chromo- some I and adult size as assessed by the length of wings. aa flies are larger than (3/3 flies, with heterokaryotypes intermediate, and the differences are more marked in males than in females. Laboratory mating experiments were perfor- med in which a single female was given a choice of two males. By examining the genotypes of the progeny larvae, it is shown that the larger male is successful in a significantly greater proportion of trials than the smaller one. This mating success is dependent on the size difference between the males and on the female size. Together these observations suggest an indirect influence of the inversion on male mating success. The possible relevance of this effect to the maintenance of the inversion polymorphism in natural populations is discussed. 1. INTRODUCTION MANY species of insects are polymorphic for chromosomal inversions. The most extensive studies of these polymorphisms have been in various species of Drosophila (da Cunha, 1955) especially D.pseudoobscura(Dobzhansky, 1971), D. persimilis (Spiess and Spiess, 1969; Yu and Spiess, 1978) and D. subobscura (Krimbas and Loukas, 1979). It is clear from the Drosophila work that there exists a multitude of selection pressures that may influence the frequencies of inversions in natural populations. -
Insect Introductions and Late Holocene Environments
Edinburgh Research Explorer A thousand bites: Insect introductions and late Holocene environments Citation for published version: Panagiotakopulu, E & Buckland, PC 2017, 'A thousand bites: Insect introductions and late Holocene environments', Quaternary Science Reviews, vol. 156, pp. 23-35. https://doi.org/10.1016/j.quascirev.2016.11.014 Digital Object Identifier (DOI): 10.1016/j.quascirev.2016.11.014 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Quaternary Science Reviews Publisher Rights Statement: © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 Quaternary Science Reviews 156 (2017) 23e35 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev A thousand bites e Insect introductions and late Holocene environments * Eva Panagiotakopulu a, , Paul C. Buckland b a School of Geociences, University of Edinburgh, EH8 9XP, UK b 20 Den Bank Close, S10 5PA, Sheffield, UK article info abstract Article history: The impact of insect species directly associated with man-made habitats and human dispersal has been, Received 3 September 2016 and remains globally significant. -
Advances in Deciphering the Genetic Basis of Insect Cuticular Hydrocarbon Biosynthesis and Variation
Heredity (2021) 126:219–234 https://doi.org/10.1038/s41437-020-00380-y REVIEW ARTICLE Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation 1 1 1,2 Henrietta Holze ● Lukas Schrader ● Jan Buellesbach Received: 6 July 2020 / Revised: 8 October 2020 / Accepted: 9 October 2020 / Published online: 2 November 2020 © The Author(s) 2020. This article is published with open access Abstract Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic 1234567890();,: 1234567890();,: boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. -
Coleoptera: Staphylinidae: Genus Aleochara) from Japan
Zootaxa 3517: 1–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F832C768-A8CA-4FEE-8C3B-BD933247FA6E Revision of the Seashore-dwelling Subgenera Emplenota Casey and Triochara Bernhauer (Coleoptera: Staphylinidae: genus Aleochara) from Japan SHÛHEI YAMAMOTO1, 2 & MUNETOSHI MARUYAMA2, 3 1Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan E-mail: [email protected] 2The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan 3Correspoding author: E-mail: [email protected] Abstract The Japanese species of the seashore-dwelling subgenera Emplenota Casey and Triochara Bernhauer of the genus Aleochara Gravenhorst are revised. Five species are recognised in Emplenota, of which three are described as new species: Aleochara (Emplenota) segregata n. sp., A. (E.) hayamai n. sp. and A. (E.) yamato n. sp. The remaining known species A. (E.) fucicola Sharp and A. (E.) puetzi (Assing) are redescribed. Three species recognised in Triochara, Aleochara (Triochara) trisulcata Weise, A. (T.) zerchei (Assing) and A. (T.) nubis (Assing) are redescribed. All species are keyed. For some species ecological data are reported. The phylogenetic relationships of the Japanese species are discussed, and the distributions of all species are mapped. Key words: biodiversity, coastal environment, identification key, Palaearctic, redescription, supratidal zones, sympatric species, taxonomy Introduction Recent studies have revealed the worldwide coastal staphylinid diversity (Moore & Legner, 1976; Hammond, 2000; Frank & Ahn, 2011), and the subfamily Aleocharinae is represented by 187 species throughout the world, representing the largest number of coastal staphylinid beetles (Frank & Ahn, 2011). -
INSECTS of MICRONESIA Diptera: Coelopidae (Phycodromidaey
INSECTS OF MICRONESIA Diptera: Coelopidae (PhycodromidaeY By D. ELMO HARDY UNIVERSITY OF HAWAII AGRICULTURAL EXPERIMENT STATION This is the first report of the occurrence of the family Coelopidae in the Pacific region other than the subarctic, subantarctic, and New Zealand areas. The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bishop Museum have made this survey and the publication of the results possible. Field research was aided by a contract between the Office of Naval Research, Department of the Navy, and the National Academy of Sciences, NR 160-175. The drawings were prepared by Marian S. Adachi, University of Hawaii. The coelopids are moderate-sized, conspicuously hairy flies which breed in kelp, and perhaps in other seaweed, washed up on the shore. The adults can be collected in large numbers by sweeping seaweed along the beaches. The group is almost restricted in distribution to cold and temperate regions of the world. Aldrich (1929, U. S. Nat. Mus., Proc. 76: 1) writing of North Amer ican species of Coe1opa s. 1. says "... all of the spp. appear to breed in the kelps and are found only on seashores where seaweeds of this group are washed up." The discovery of a species in the western Caroline Islands greatly extends the known range of the family. The members of this family, as defined by Hendel [1928, Tierwelt Deutsch lands 11 (2) : 89], are characterized by having the prelabrum produced; the genae swollen (bulging); the body depressed, the postvertical bristles well developed and convergent; the tibiae with preapical dorsal bristles, the median pair crossed; the subcostal vein complete, and the costa not broken. -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.