Balixafortide Execution and Pipeline Expansion

Total Page:16

File Type:pdf, Size:1020Kb

Balixafortide Execution and Pipeline Expansion POLYPHOR Corporate Update and 2019 Financial Results April 28th 2020 Forward-looking statement This presentation (the “Presentation”) has been prepared by Polyphor Ltd. (“the Company” and together with its subsidiary, “we”, “us” or the “Group”) solely for informational purposes. Certain statements in this Presentation are forward-looking statements, beliefs or opinions, including statements relating to, among other things, the Company's business, financial condition, future performance, results of operation, potential new market opportunities, growth strategies, and expected growth in the markets in which the Group operates. In some cases, these forward-looking statements may be identified by the use of forward-looking terminology, including the terms “targets”, “plans”, “believes”, “estimates”, “anticipates”, expects”, “intends”, “may”, “will” or “should” or, in each case, their negative or other variations or similar expressions. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial consequences of the plans and events described herein. Actual results may differ materially from those set forth in the forward-looking statements as a result of various factors (including, but not limited to, future global economic conditions, changed market conditions, intense competition in the markets in which the Group operates, costs of compliance with applicable laws, regulations and standards, diverse political, legal, economic and other conditions affecting the Group’s markets, and other factors beyond the control of the Group). Neither the Company nor any of its respective directors, officers, employees, agents, affiliates, advisors or any other person is under any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. You should not place undue reliance on forward-looking statements, which speak of the date of this Presentation. Statements contained in this Presentation regarding past trends or events should not be taken as a representation that such trends or events will continue in the future. Some of the information presented herein is based on statements by third parties, and no representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of this information or any other information or opinions contained herein, for any purpose whatsoever. 2 2019 Highlights and the Outlook After 2019 turnaround, 2020 is focused on Balixafortide execution and pipeline expansion 2019 Highlights: Outlook: ▪ Balixafortide – Start FORTRESS Phase III trial, followed ▪ Balixafortide – Strong Phase III trial progress in by strong progress metastatic breast cancer with enrollment ahead of plan and positive first DSMB. First co-primary endpoint ▪ Decision to halt murepavadin I.V. clinical program (ORR*) data-cut expected end Q1 2021 ▪ Inhaled Murepavadin – Completion preclinical program ▪ Plans to expand balixafortide opportunity with new dosing schedule, non IV formulation, earlier lines of ▪ POL7306 preclinical program complete - decision to not mBCa, other tumor types and combinations submit IND, but continue formulation / peptide design ▪ Explore new oncology candidates from our platform ▪ New leadership and board of directors changes following ORR data in Q1 2021 ▪ CHF 77.4 million in cash and cash equivalents as of ▪ Inhaled Murepavadin – Plan to submit CTA in Q4 2020 December 31, 2019 ▪ Renewed strategy for our research and preclinical antibiotic programs with strong focus on formulation and peptide design optimization *Objective Response Rate 3 Polyphor Pipeline and Plan Opportunity to provide multiple pipeline progress and key inflection points until 2022 Program Research Preclinical Phase I Phase II Phase III Market Metastatic breast cancer Balixafortide Other cancer/combos oncology - Solid tumors/ Oncology liquid cancers Pipeline Solid tumors/ liquid cancers Immuno Inhaled CF infections Murepavadin POL7306 / All WHO Priority 1 BamA Pathogens MDR* Antibiotics Thanatin Enterobactericaea Pipeline Today Pipeline 2022 Plan *Multidrug Resistant 4 Balixafortide Most advanced CXCR4 antagonist in clinical development for solid tumors Unlocking the potential of CXCR4 A novel immuno-oncology approach antagonism starting from a large indication ▪ Highly selective and specific CXCR4 antagonist ▪ First CXCR4 antagonist spearheading novel ▪ Clinically efficacious dose immuno-oncology approach in Phase III mBC** ▪ Clinical exposure 2000 fold above IC ▪ Large first indication in HER2 negative mBC 2nd 50 and later lines of chemotherapy ▪ Not cytotoxic at clinical doses ▪ In combination with eribulin, the most recently ▪ Low propensity of dose limiting toxicity with >5 approved chemotherapeutic in mBC fold safety margin* ▪ Potential for: ▪ Potential to improve dose and schedule in ▪ Earlier lines of therapies in combination with various combinations other chemotherapies ▪ Other tumor/oncology indications ▪ Combination with checkpoint inhibitors * comparing toxicology studies to current human doses ** Metastatic Breast Cancer 5 FORTRESS Study Timeline Flow Chart Overall population N=384 , 320 3rd line + and 64 2nd line 90% power for detecting superiority of Balixafortide + eribulin versus eribulin 6/19 -9/20 15 months recruitment monotherapy for the primary efficacy endpoint of PFS in both the 3rd line + and overall population 6 months from last pt Accelerated approval early `21 ORR* data cut enrolled option 12 months from last pt PFS* + interim OS NDA end `21 enrolled data cut filing 24 months from last pt end `22 Label extension enrolled OS* final analysis End of Study *Alpha allocation and recycling is used to ensure control of the overall Type I error rate for these formal analyses 6 FORTRESS Recruitment is Ahead of Plan 69% of patients FORTRESS Randomization Curve randomized 300 250 200 150 100 50 0 June July August September October November December January February March April (27th) Plan Patients Randomised Actual Patients Randomised ▪ Today’s randomization status n= 264 (69% of 384) ▪ Sites in all continents open. ▪ In the current situation with Covid 19 we are taking all possible measures to safeguard patients, study conductors and investigators and the study conduct in general. ▪ As of end of April, we are on plan to complete the recruitment of 384 patients in the Fortress study by end of September 2020. 7 Balixafortide Development Strategy Near and midterm goals: ▪ Completion of dossier for NDA filing ongoing: ▪ Clinical pharmacology package ▪ CMC package ▪ Non clinical safety and pharmacology package ▪ Further development strategy beyond FORTRESS: ▪ Investigate improved dosing and scheduling Key enablers for expanding ▪ Define maximum tolerated dose (MTD) beyond the initial indication and ▪ Assess tolerance and preliminary efficacy in combination with other building value for potential future chemotherapies in mBC partnerships ▪ Develop other formulations than IV ▪ Develop a CXCR4 diagnostic test 8 Oncology Pipeline Strategy Long-term targets in expanding oncology opportunity ▪ CXCR4 expression has been validated as a negative prognostic factor for other cancer types ▪ Balixafortide has therefore a potential as a novel treatment option in tumors beyond mBCa ▪ Combinations with other immuno-oncology therapies and CXCR4 antagonists are promising and open further opportunities for balixafortide ▪ Identified novel immuno-oncology targets to be addressed by peptides from the macrocycle technology platform ▪ Post ORR results, intention to identify new lead compounds in the area of immuno-oncology to be nominated as development candidates 9 Balixafortide Strategy – Initial Indication and Expansion Plan Potential US End of Today ORR PFS approval EU Approval Recruitment (accelerated) Initial Indication 2020 2021 2022 2023 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Preclinical studies in other combinations / tumors Key enablers for Improved dose scheduling study expanding beyond the initial indication to earlier lines / Phase II Study in combination with other chemo in earlier mBC other tumors and combos and building value for ExpansionPlan Future Future Indication potential future Non IV Formulation partnerships. CXCR4 Diagnostic Test 10 2023 mBCa Market Projection and Initial Opportunity (US and EU5) Large Total Addressable Patient Population Limited Competition in HR+: Balixafortide + eribulin to become new Balixafortide Can Target Projected M. Share for Novel Options standard of care in later lines of HR+ 2023 Projection On Treatment Share (Novel agents are typically in combo with chemo) 105.000 15% 9% 220.000 8% TNBC 3K 4% HR+ 20K 5% Novel Agents Chemo Monotherapy Eribulin patients Earlier lines: Abemaciclib and AKT inhibitor Later Lines: sacituzumab (primary balixa competitor) BRCA+ patients across lines: PARP inhibitors Balixafortide Novel Agents Chemo. Monotherapy penetration 29.000 46% 26% 46.000 ▪ Large market (200K patients) in 2nd line and 22% beyond in HR+ 22% ▪ Limited competition from novel treatments in HR+ 25% Balixafortide opportunity segments ▪ Eribulin is well established and can expand if PoC study results with balixafortide are replicated. Earlier lines: Avastin, checkpoint inhibitors & AKT inhibitors in earlier
Recommended publications
  • Jonathan Butcher, Polyphor, Switzerland
    1 BIO 2016 Global Workshop for Novel Anti-Infectives by Jonathan J. Butcher PhD, Polyphor Ltd, Hegenheimermattweg 125, CH-4123, Allschwil, Switzerland Discovery and Development of Novel Macrocycle Antibiotics BIO 2016 Global Workshop for Novel Anti-Infectives – June 6, 2016 2 Murepavadin (POL7080) A once in a generation discovery POL7080, antibiotic against Pseudomonas with a new mode of action POL0067 POL6137 POL7001 POL7080 CCS Protegrin I (1ZY6) Pseudomonas specific! PK/ADMET optimization Srinivas, S., et al. (2010) Science, 327: 1010 – 1012 Very potent and narrow MIC distribution Efficacy of POL7080 in a murine pneumonia (400 recent Pseudomonas strains) model against Pseudomonas aeruginosa (clinical isolate PAX11045, MIC = 0.125 mg/mL) EUCAST Antimicrobial MIC MIC Range 7 50 90 %S / %R Murepavadin 0.12 0.25 0.06 - 1 - / - 6 300 Meropenem 0.5 16 <0.03 - >64 73 / 13 MIC50 Ciprofloxacin 0.12 16 <0.06 - >32 73 / 22 Colistin 1 1 0.25 - 2 100 / - 5 200 CFU/lung 10 4 Log 3 MIC90 100 Number of isolates Numberof 2 Number of isolates of Number MIC99 0 Vehicle 0.06 0.125 0.25 0.5 11 0.5 0.06 0.25 0.125MIC (μg/mL) MIC (µg/mL) MIC (g/ml) Start of treatment POL7080POL7080 5.5 mg/kgPOL7080 11 mg/kgPOL7080 15 mg/kg 22 mg/kg POL7080 2.75 mg/kg Very potent anti-Pseudomonas activity, rapidly bactericidal at 2-4 times the MIC, with a narrow WT distribution. Excellent in vivo efficacy and safety in broad range of systemic infection models, allowed for FIM studies BIO 2016 Global Workshop for Novel Anti-Infectives – June 6, 2016 3 Murepavadin (POL7080) New class of anti-Pseudomonal antibiotics with novel mode of action PK snapshot and summary of clinical studies ongoing or completed AUC and C increase linearly with dose, t is approx.
    [Show full text]
  • IX Updating Course of Antimicrobials and Infectious Diseases
    REVISTA ESPAÑOLA DE QQuimioterapiauimioterapia SPANISH JOURNAL OF CHEMOTHERAPY ISSN: 0214-3429 Volume 32 Supplement number 2 September 2019 Pages: 01-79 IX Updating Course of Antimicrobials and Infectious Diseases Coordination: Dr. FJ. Candel González Servicio de Microbiologia Clínica Hospital Clínico San Carlos Madrid. Spain. 18 y 19 de febrero de 2019 Auditorio San Carlos. Pabellón Docente Publicación Oficial Hospital Clínico San Carlos de la Sociedad Española de Quimioterapia REVISTA ESPAÑOLA DE Quimioterapia Revista Española de Quimioterapia tiene un carácter multidisciplinar y está dirigida a todos aquellos profesionales involucrados en la epidemiología, diagnóstico, clínica y tratamiento de las enfermedades infecciosas Fundada en 1988 por la Sociedad Española de Quimioterapia Sociedad Española de Quimioterapia Indexada en Publicidad y Suscripciones Publicación que cumple los requisitos de Science Citation Index Sociedad Española de Quimioterapia soporte válido Expanded (SCI), Dpto. de Microbiología Index Medicus (MEDLINE), Facultad de Medicina ISSN Excerpta Medica/EMBASE, Avda. Complutense, s/n 0214-3429 Índice Médico Español (IME), 28040 Madrid Índice Bibliográfico en Ciencias e-ISSN de la Salud (IBECS) 1988-9518 Atención al cliente Depósito Legal Secretaría técnica Teléfono 91 394 15 12 M-32320-2012 Dpto. de Microbiología Correo electrónico Facultad de Medicina [email protected] Maquetación Avda. Complutense, s/n Kumisai 28040 Madrid [email protected] Consulte nuestra página web Impresión Disponible en Internet: www.seq.es España www.seq.es Esta publicación se imprime en papel no ácido. This publication is printed in acid free paper. LOPD Informamos a los lectores que, según lo previsto © Copyright 2019 en el Reglamento General de Protección Sociedad Española de de Datos (RGPD) 2016/679 del Parlamento Quimioterapia Europeo, sus datos personales forman parte de la base de datos de la Sociedad Española de Reservados todos los derechos.
    [Show full text]
  • Clinical Isolates of Extensively Drug-Resistant
    Contact Information: Helio S. Sader, MD, PhD To obtain a PDF of this poster: Murepavadin Activity Tested against Contemporary (2016–2017) Clinical Isolates of Extensively • Scan the QR code JMI Laboratories OR ECCMID 2018 345 Beaver Kreek Centre, Suite A • Visit https://www.jmilabs.com/data/posters Drug-Resistant (XDR) Pseudomonas aeruginosa North Liberty, IA 52317 /ECCMID2018-murapavadin-XDR Poster #P1661 HS Sader1, RK Flamm1, GE Dale2, PR Rhomberg1, M Castanheira1 Phone: (319) 665-3370 -pseudomonas-aeruginosa.pdf Fax: (319) 665-3371 Charges may apply. 1. JMI Laboratories, North Liberty, Iowa, USA; 2. Polyphor Ltd, Hegenheimermattweg 125, CH-4123 Allschwil, Switzerland Email: [email protected] No personal information is stored. Table 1 Antimicrobial activity of murepavadin, colistin, and ceftolozane-tazobactam tested against 785 XDR P. aeruginosa isolates from Figure 1 Murepavadin MIC distributions for XDR P. aeruginosa isolates from Europe Introduction Europe and North America and North America No. of isolates at MIC (mg/L; cumulative %) Antimicrobial agent MIC MIC • Murepavadin (formerly POL7080) is a 14-amino-acid cyclic peptide for ≤0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 >a 50 90 60 intravenous administration that represents the first member of a novel class of 10 159 362 190 38 8 8 3 7 Murepavadin 0.12 0.25 outer membrane protein targeting antibiotic (OMPTA) 1.3 21.5 67.6 91.8 96.7 97.7 98.7 99.1 100.0 Europe 6 41 242 391 55 47 0 3 North America • Murepavadin displays a novel mode of action as it binds to the lipopolysaccharide Colistin 1 2 transport protein D (LptD) in the outer membrane of the bacterium, blocks the 0.8 6.0 36.8 86.6 93.6 99.6 99.6 100.0 3 41 295 144 71 34 21 31 145 LPS translocation, and ultimately kills the bacterium Ceftolozane-tazobactam 2 >32 0.4 5.6 43.2 61.5 70.6 74.9 77.6 81.5 100.0 40 • Given the pathogen-specific nature of murepavadin it is unlikely to generate a Greater than the highest dilution tested.
    [Show full text]
  • Periodic Project Report Inhaled Antibiotics in Bronchiectasis and Cystic Fibrosis Iabc
    Periodic project report Inhaled Antibiotics in Bronchiectasis and Cystic Fibrosis iABC Dr David Hughes Novartis Pharma AG Lichtstrasse 35 4056 Basel Switzerland Period 08/2017 – 07/2018 Reporting Period 3 Description of work - DoW v2.0 Date of submission: 02 Oct 2018 IMI/INT/2013-01039 - Version 6 - 23 September 2016 Contents Declaration of the coordinator ................................................................................ Error! Bookmark not defined. 1 Executive summary .......................................................................................................................................... 3 2 Summary of progress against objectives ......................................................................................................... 3 2.1 Summary table ......................................................................................................................................... 5 2.2 Description of progress for delayed milestones/deliverables not yet completed or partially completed . 8 2.3 Deviations from Description of Work ..................................................................................................... 10 3 Summary of Major Achievements and key dissemination activities ............................................................... 11 3.1 Major achievements ............................................................................................................................... 11 3.2 Key dissemination activities ..................................................................................................................
    [Show full text]
  • Β-Hairpin Antimicrobial Peptides
    β-hairpin antimicrobial peptides: structure, function and mode of action Ingrid Alexia Edwards MSc Chemistry and chemical engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Institute for Molecular Bioscience Abstract Abstract A ‘state of emergency’ was declared by the World Health Organization three years ago to combat the increasing rate of resistance arising in bacteria to all currently available antibiotics on the market. Antimicrobial resistance is now a worldwide concern, and renewed efforts are needed in the search for new replacement drugs for obsolete antibiotics. Antimicrobial peptides (AMPs) have been discovered and studied over decades; importantly very limited bacterial resistance has been reported to date. The work here aims to better characterize and understand the structure-function relationships of select β-hairpin AMPs, leading to the design of novel, optimized and potentially therapeutically valuable peptides. Chapter 1 reviews the field of β-hairpin AMPs and provides a background for the specific AMPs studied in this thesis. Chapter 2 consists of an original data set that strengthens the current knowledge of β-hairpin AMPs by comparing their activity profile under similar conditions. This work analysed the contribution of amphipathicity and hydrophobicity to antimicrobial activity and cytotoxicity of β- hairpin peptides, concluding that a very fine balance between charge, hydrophobicity, amphipathicity, secondary and tertiary structure and mode of action is needed for a peptide to be therapeutically valuable. From this study, two distinct but linked areas of further investigation were identified (i) a structure activity and function relationship study and (ii) a determination of the mode of action of select β-hairpin AMPs.
    [Show full text]
  • Novel Role of Pseudomonas Aeruginosa Lptd Operon Sundar Pandey [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 6-29-2018 Novel Role of Pseudomonas Aeruginosa LptD Operon Sundar Pandey [email protected] DOI: 10.25148/etd.FIDC006902 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Bacteriology Commons, Biology Commons, and the Pathogenic Microbiology Commons Recommended Citation Pandey, Sundar, "Novel Role of Pseudomonas Aeruginosa LptD Operon" (2018). FIU Electronic Theses and Dissertations. 3734. https://digitalcommons.fiu.edu/etd/3734 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida NOVEL ROLE OF PSEUDOMONAS AERUGINOSA LPTD OPERON A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Sundar Pandey 2018 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Sundar Pandey, and entitled Novel Role of Pseudomonas aeruginosa lptD Operon, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Fenfei Leng _______________________________________ Fernando Noriega _______________________________________ Joanna Goldberg _______________________________________ John Makemson _______________________________________ Kalai Mathee, Major Professor Date of Defense: June 29, 2018 The dissertation of Sundar Pandey is approved. _______________________________________ Dean Michael R. Heithaus College of Arts, Sciences and Education _______________________________________ Andrés G.
    [Show full text]
  • Antimicrobial Activity of Murepavadin Tested Against Clinical Isolates of Pseudomonas Aeruginosa Helio S
    Contact Information: To obtain a PDF of this poster: Antimicrobial Activity of Murepavadin Tested against Clinical Isolates of Pseudomonas aeruginosa Helio S. Sader, MD, PhD • Scan the QR code JMI Laboratories OR ECCMID 2018 345 Beaver Kreek Centre, Suite A • Visit http://www.jmilabs.com/data/posters Collected in Europe, United States, and China North Liberty, IA 52317 /ECCMID2018-murepavadim Poster #P1662 HS Sader1, GE Dale2, LR Duncan1, PR Rhomberg1, RK Flamm1 Phone: (319) 665-3370 -pseudomonas-aeruginosa.pdf Fax: (319) 665-3371 Charges may apply. 1. JMI Laboratories, North Liberty, Iowa, USA; 2. Polyphor Ltd, Hegenheimermattweg 125, CH-4123 Allschwil, Switzerland Email: [email protected] No personal information is stored. Figure 1 Murepavadin MIC distributions for P. aeruginosa isolates and resistant subsets from the United States, Europe, and China Table 2 Activity of murepavadin and comparator antimicrobial agents when tested against P. aeruginosa Introduction CLSIa EUCASTa CLSIa EUCASTa 100 Antimicrobial agent (no.) MIC50 MIC90 Antimicrobial agent (no.) MIC50 MIC90 • Murepavadin (formerly POL7080) is a 14-amino-acid cyclic peptide for %S %R %S %R %S %R %S %R intravenous administration that represents the first member of a novel class All All isolates (1,219) United States isolates (417) of outer membrane protein targeting antibiotic (OMPTA) being developed MDR Murepavadin 0.12 0.12 Murepavadin 0.12 0.12 for the treatment of nosocomial pneumonia suspected or caused by 80 XDR Pseudomonas aeruginosa Colistin 1 1 98.9 1.1 98.9
    [Show full text]
  • Clinical Isolates of Extensively Drug-Resistant (XDR) Pseudomona
    Contact Information: Helio S. Sader, MD, PhD To obtain a PDF of this poster: Murepavadin Activity Tested against Contemporary (2016–2017) Clinical Isolates of Extensively • Scan the QR code JMI Laboratories OR ECCMID 2018 345 Beaver Kreek Centre, Suite A • Visit https://www.jmilabs.com/data/posters Drug-Resistant (XDR) Pseudomonas aeruginosa North Liberty, IA 52317 /ECCMID2018-murapavadin-XDR Poster #P1661 HS Sader1, RK Flamm1, GE Dale2, PR Rhomberg1, M Castanheira1 Phone: (319) 665-3370 -pseudomonas-aeruginosa.pdf Fax: (319) 665-3371 Charges may apply. 1. JMI Laboratories, North Liberty, Iowa, USA; 2. Polyphor Ltd, Hegenheimermattweg 125, CH-4123 Allschwil, Switzerland Email: [email protected] No personal information is stored. Table 1 Antimicrobial activity of murepavadin, colistin, and ceftolozane-tazobactam tested against 785 XDR P. aeruginosa isolates from Figure 1 Murepavadin MIC distributions for XDR P. aeruginosa isolates from Europe Introduction Europe and North America and North America No. of isolates at MIC (mg/L; cumulative %) Antimicrobial agent MIC MIC • Murepavadin (formerly POL7080) is a 14-amino-acid cyclic peptide for ≤0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 >a 50 90 60 intravenous administration that represents the first member of a novel class of 10 159 362 190 38 8 8 3 7 Murepavadin 0.12 0.25 outer membrane protein targeting antibiotic (OMPTA) 1.3 21.5 67.6 91.8 96.7 97.7 98.7 99.1 100.0 Europe 6 41 242 391 55 47 0 3 North America • Murepavadin displays a novel mode of action as it binds to the lipopolysaccharide Colistin 1 2 transport protein D (LptD) in the outer membrane of the bacterium, blocks the 0.8 6.0 36.8 86.6 93.6 99.6 99.6 100.0 3 41 295 144 71 34 21 31 145 LPS translocation, and ultimately kills the bacterium Ceftolozane-tazobactam 2 >32 0.4 5.6 43.2 61.5 70.6 74.9 77.6 81.5 100.0 40 • Given the pathogen-specific nature of murepavadin it is unlikely to generate a Greater than the highest dilution tested.
    [Show full text]
  • Omptas: Outer Membrane Protein Targeting Antibiotics Antibiotic Guardian Conference June 27Th, 2018 in London, United Kingdom
    OMPTAs: Outer Membrane Protein Targeting Antibiotics Antibiotic Guardian Conference June 27th, 2018 in London, United Kingdom. Dale GE: June 27th 2018, Antibiotic Guardian Conference. London, United Kingdom Disclaimer Forward looking statements This presentation does not constitute or form part of, and should not be construed as, an offer or invitation or inducement to subscribe for, underwrite or otherwise acquire, any securities of Polyphor Ltd. (“the Company” and together with its subsidiary, “we”, “us” or the “Group”), nor should it or any part of it form the basis of, or be relied on in connection with, any contract to purchase or subscribe for any securities of the Group, nor shall it or any part of it form the basis of, or be relied on in connection with, any contract or commitment whatsoever. Certain statements in this presentation are forward-looking statements, beliefs or opinions, including statements relating to, among other things, the Company's business, financial condition, future performance, results of operation, potential new market opportunities, growth strategies, and expected growth in the markets in which the Group operates. In some cases, these forward-looking statements may be identified by the use of forward-looking terminology, including the terms “targets”, “believes”, “estimates”, “anticipates”, expects”, “intends”, “may”, “will” or “should” or, in each case, their negative or other variations or similar expressions. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial consequences of the plans and events described herein.
    [Show full text]
  • VIII Updating Course of Antimicrobials and Infectious Disesaes
    REVISTA ESPAÑOLA DE QQuimioterapiauimioterapia SPANISH JOURNAL OF CHEMOTHERAPY ISSN: 0214-3429 Volume 31 Supplement number 1 September 2018 Pages: 01-72 VIII Updating Course of Antimicrobials and Infectious Disesaes Coordination: Francisco Javier Candel MD, PhD Department of Clinical Microbiology Hospital Clínico San Carlos Madrid. Spain. 12 y 13 de febrero de 2018 Auditorio San Carlos. Pabellón Docente Hospital Clínico San Carlos Publicación Oficial de la Sociedad Española de Quimioterapia REVISTA ESPAÑOLA DE Quimioterapia Revista Española de Quimioterapia tiene un carácter multidisciplinar y está dirigida a todos aquellos profesionales involucrados en la epidemiología, diagnóstico, clínica y tratamiento de las enfermedades infecciosas Fundada en 1988 por la Sociedad Española de Quimioterapia Sociedad Española de Quimioterapia Indexada en Publicidad y Suscripciones Publicación que cumple los requisitos de Science Citation Index Sociedad Española de Quimioterapia soporte válido Expanded (SCI), Dpto. de Microbiología Index Medicus (MEDLINE), Facultad de Medicina ISSN Excerpta Medica/EMBASE, Avda. Complutense, s/n 0214-3429 Índice Médico Español (IME), 28040 Madrid Índice Bibliográfico en Ciencias e-ISSN de la Salud (IBECS) 1988-9518 Atención al cliente Depósito Legal Secretaría técnica Teléfono 91 394 15 12 M-32320-2012 Dpto. de Microbiología Correo electrónico Facultad de Medicina [email protected] Maquetación Avda. Complutense, s/n acomm 28040 Madrid [email protected] Consulte nuestra página web Impresión Disponible en Internet: www.seq.es España www.seq.es Esta publicación se imprime en papel no ácido. This publication is printed in acid free paper. LOPD Informamos a los lectores que, según la © Copyright 2017 Ley 15/1999 de 13 de diciembre, sus datos Sociedad Española de personales forman parte de la base de datos de Quimioterapia la Sociedad Española de Quimioterapia (si es usted socio) Reservados todos los derechos.
    [Show full text]
  • Antibiotics Currently in Global Clinical Development Note: This Data Visualization Was Updated in March 2019 with New Data
    A data table from March 2019 Antibiotics Currently in Global Clinical Development Note: This data visualization was updated in March 2019 with new data. As of December 2018, approximately 42 new antibiotics with the potential to treat serious bacterial infections are in clinical development. The success rate for clinical drug development is low; historical data show that, generally, only 1 in 5 infectious disease products that enter human testing (phase 1 clinical trials) will be approved for patients.* Below is a snapshot of the current antibiotic pipeline, based on publicly available information and informed by external experts. Please note that this resource focuses exclusively on small molecule products that act systemically (drugs that work throughout the body), contain at least one component not previously approved, and have the potential to treat serious or life-threatening infections.1 In September 2017, Pew’s assessment of the antibiotic pipeline was expanded to include products in development globally. Because this resource is updated periodically, footnote numbers may not be sequential. Please contact [email protected] with additions or updates. Expected Expected activity activity against Development against CDC urgent Drug name Company Drug class Target resistant Gram- Potential indication(s)?5 phase2 or WHO critical negative ESKAPE threat pathogen?4 pathogens?3 Approved for: Community-acquired bacterial pneumonia, acute bacterial skin Approved 30S subunit Nuzyra Paratek and skin structure infections; other potential Oct. 2, 2018 Tetracycline of bacterial Yes No (omadacycline) Pharmaceuticals Inc. indications: complicated urinary tract (U.S. FDA) ribosome infections and uncomplicated urinary tract infections Approved 30S subunit Xerava Tetraphase Aug. 27, 2018 Tetracycline of bacterial Yes Possibly (CRE, CRAB) Complicated intra-abdominal infections (eravacycline) Pharmaceuticals Inc.
    [Show full text]
  • Novel Insights Into the Connection Between Peptidoglycan Recycling and Multidrug Resistance in Pseudomonas Aeruginosa
    Novel insights into the connection between peptidoglycan recycling and multidrug resistance in Pseudomonas aeruginosa Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Michael Stefan Sonnabend aus Göppingen Tübingen 2020 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 15.05.2020 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Ingo B. Autenrieth 2. Berichterstatter: PD Dr. Erwin Bohn Table of contents Table of contents Table of contents ......................................................................................................... I Abbreviations .............................................................................................................. II Zusammenfassung ..................................................................................................... 1 Abstract ...................................................................................................................... 3 List of publications ...................................................................................................... 4 Personal contribution .................................................................................................. 5 Introduction ................................................................................................................
    [Show full text]