Type Theory and Lexical Decomposition∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linear Type Theory for Asynchronous Session Types
JFP 20 (1): 19–50, 2010. c Cambridge University Press 2009 19 ! doi:10.1017/S0956796809990268 First published online 8 December 2009 Linear type theory for asynchronous session types SIMON J. GAY Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK (e-mail: [email protected]) VASCO T. VASCONCELOS Departamento de Informatica,´ Faculdade de Ciencias,ˆ Universidade de Lisboa, 1749-016 Lisboa, Portugal (e-mail: [email protected]) Abstract Session types support a type-theoretic formulation of structured patterns of communication, so that the communication behaviour of agents in a distributed system can be verified by static typechecking. Applications include network protocols, business processes and operating system services. In this paper we define a multithreaded functional language with session types, which unifies, simplifies and extends previous work. There are four main contributions. First is an operational semantics with buffered channels, instead of the synchronous communication of previous work. Second, we prove that the session type of a channel gives an upper bound on the necessary size of the buffer. Third, session types are manipulated by means of the standard structures of a linear type theory, rather than by means of new forms of typing judgement. Fourth, a notion of subtyping, including the standard subtyping relation for session types (imported into the functional setting), and a novel form of subtyping between standard and linear function types, which allows the typechecker to handle linear types conveniently. Our new approach significantly simplifies session types in the functional setting, clarifies their essential features and provides a secure foundation for language developments such as polymorphism and object-orientation. -
COPULAR CLAUSES in ENGLISH* Masatake Arimoto Nanzan University 1. Introduction English Has Copular Verb Be As Exemplified In
COPULAR CLAUSES IN ENGLISH* Masatake Arimoto Nanzan University 1. Introduction English has copular verb be as exemplified in sentences like (1) and (2). (1) a. John is honest. b. John is a philosopher. (2) a. John is the Mayor of Cambridge. b. A picture of the wall was the cause of the riot. (Moro, 1997) Sentences in (1) and (2) appear to express that the pre-verbal elements are related to post-verbal elements in the same way. However, sentences in (1) and those in (2) behave differently. For example, if post-verbal elements are placed before be and pre-verbal elements are placed after be, the resultant sentences are unacceptable for (1) as in (3), but acceptable for (2) as in (4). (3) a. *Honest is John. b. *A philosopher is John. (4) a. The Mayor of Cambridge is John. b. The cause of the riot was a picture of the wall. Sentences like (2) and sentences like (4) again appear to express the same meanings, but there are some syntactic differences between them. Both of them appear in an ECM construction as in (5), but only sentences in (2) are possible in a Small Clause construction as in (6): sentences in (4) are impossible in a Small Clause construction as in (6b). (5) a. John considers a picture of the wall to be the cause of the riot. b. John considers the cause of the riot to be a picture of the wall. (6) a. John considers a picture of the wall the cause of the riot. b. -
A General Framework for the Semantics of Type Theory
A General Framework for the Semantics of Type Theory Taichi Uemura November 14, 2019 Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-L¨oftype theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory. 1 Introduction One of the key steps in the semantics of type theory and logic is to estab- lish a correspondence between theories and models. Every theory generates a model called its syntactic model, and every model has a theory called its internal language. Classical examples are: simply typed λ-calculi and cartesian closed categories (Lambek and Scott 1986); extensional Martin-L¨oftheories and locally cartesian closed categories (Seely 1984); first-order theories and hyperdoctrines (Seely 1983); higher-order theories and elementary toposes (Lambek and Scott 1986). Recently, homotopy type theory (The Univalent Foundations Program 2013) is expected to provide an internal language for what should be called \el- ementary (1; 1)-toposes". As a first step, Kapulkin and Szumio (2019) showed that there is an equivalence between dependent type theories with intensional identity types and finitely complete (1; 1)-categories. As there exist correspondences between theories and models for almost all arXiv:1904.04097v2 [math.CT] 13 Nov 2019 type theories and logics, it is natural to ask if one can define a general notion of a type theory or logic and establish correspondences between theories and models uniformly. -
On ''Verbal Dps'
From predication to reference: On ”verbal DPs” in Movima Katharina Haude To cite this version: Katharina Haude. From predication to reference: On ”verbal DPs” in Movima. Bonnot Christine; Outi Duvallon; Hélène de Penanros. Individuation et référence nominale à travers les langues, Lambert- Lucas, pp.53-77, 2019, 978-2-35935-294-8. hal-01971969v2 HAL Id: hal-01971969 https://hal.archives-ouvertes.fr/hal-01971969v2 Submitted on 3 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. From predication to reference: On “verbal DPs” in Movima Katharina Haude (CNRS–SeDyL) Published as: Haude, Katharina. 2019. From predication to reference: On “verbal DPs” in Movima. In Individuation et référence nominale à travers les langues. Bonnot, Christine, Outi Duvallon et Hélène de Penanros (eds), 53-77. Paris: Editions Lambert-Lucas. Abstract In Movima (isolate, Bolivia), both verbs and nouns are basically predicates, but when preceded by an article, both nouns and verbs form part of a determiner phrase (DP). The article has an individuating function in that it specifies the referent for humanness/sex, number, and spatio- temporal location. When a DP contains a verb, it refers to an event participant, whose role in the event (single participant, agent, or patient) is identified by verbal morphology. -
A Cross-Linguistic Study of Grammatical Organization
Complement Clauses and Complementation Systems: A Cross-Linguistic Study of Grammatical Organization Dissertation zur Erlangung des akademischen Grades eines Doctor philosophiae (Dr. phil.) vorgelegt dem Rat der Philosophischen Fakultät der Friedrich-Schiller-Universität Jena von Karsten Schmidtke-Bode, M.A. geb. am 26.06.1981 in Eisenach Gutachter: 1. Prof. Dr. Holger Diessel (Friedrich-Schiller-Universität Jena) 2. Prof. Dr. Volker Gast (Friedrich-Schiller-Universität Jena) 3. Prof. Dr. Martin Haspelmath (MPI für Evolutionäre Anthropologie Leipzig) Tag der mündlichen Prüfung: 16.12.2014 Contents Abbreviations and notational conventions iii 1 Introduction 1 2 The phenomenon of complementation 7 2.1 Introduction 7 2.2 Argument status 9 2.2.1 Complement clauses and argument-structure typology 10 2.2.2 On the notion of ‘argument’ 21 2.3 On the notion of ‘clause’ 26 2.3.1 Complementation constructions as biclausal units 27 2.3.2 The internal structure of clauses 31 2.4 The semantic content of complement clauses 34 2.5 Environments of complementation 36 2.5.1 Predicate classes as environments of complementation 37 2.5.2 Environments studied in the present work 39 3 Data and methods 48 3.1 Sampling and sources of information 48 3.2 Selection and nature of the data points 53 3.3 Storage and analysis of the data 59 4 The internal structure of complementation patterns 62 4.1 Introduction 62 4.2 The morphological status of the predicate 64 4.2.1 Nominalization 65 4.2.2 Converbs 68 4.2.3 Participles 70 4.2.4 Bare verb stems 71 4.2.5 Other dependent -
Dependable Atomicity in Type Theory
Dependable Atomicity in Type Theory Andreas Nuyts1 and Dominique Devriese2 1 imec-DistriNet, KU Leuven, Belgium 2 Vrije Universiteit Brussel, Belgium Presheaf semantics [Hof97, HS97] are an excellent tool for modelling relational preservation prop- erties of (dependent) type theory. They have been applied to parametricity (which is about preservation of relations) [AGJ14], univalent type theory (which is about preservation of equiv- alences) [BCH14, Hub15], directed type theory (which is about preservation of morphisms) and even combinations thereof [RS17, CH19]. Of course, after going through the endeavour of con- structing a presheaf model of type theory, we want type-theoretic profit, i.e. we want internal operations that allow us to write cheap proofs of the `free' theorems [Wad89] that follow from the preservation property concerned. While the models for univalence, parametricity and directed type theory are all just cases of presheaf categories, approaches to internalize their results do not have an obvious common ances- tor (neither historically nor mathematically). Cohen et al. [CCHM16] have used the final type extension operator Glue to prove univalence. In previous work with Vezzosi [NVD17], we used Glue and its dual, the initial type extension operator Weld, to internalize parametricity to some extent. Before, Bernardy, Coquand and Moulin [BCM15, Mou16] have internalized parametricity using completely different `boundary filling’ operators Ψ (for extending types) and Φ (for extending func- tions). Unfortunately, Ψ and Φ have so far only been proven sound with respect to substructural (affine-like) variables of representable types (such as the relational or homotopy interval I). More 1 recently, Licata et al. [LOPS18] have exploited the fact that the homotopyp interval I is atomic | meaning that the exponential functor (I ! xy) has a right adjoint | in order to construct a universe of Kan-fibrant types from a vanilla Hofmann-Streicher universe [HS97] internally. -
Martin-Löf's Type Theory
Martin-L¨of’s Type Theory B. Nordstr¨om, K. Petersson and J. M. Smith 1 Contents 1 Introduction . 1 1.1 Different formulations of type theory . 3 1.2 Implementations . 4 2 Propositions as sets . 4 3 Semantics and formal rules . 7 3.1 Types . 7 3.2 Hypothetical judgements . 9 3.3 Function types . 12 3.4 The type Set .......................... 14 3.5 Definitions . 15 4 Propositional logic . 16 5 Set theory . 20 5.1 The set of Boolean values . 21 5.2 The empty set . 21 5.3 The set of natural numbers . 22 5.4 The set of functions (Cartesian product of a family of sets) 24 5.5 Propositional equality . 27 5.6 The set of lists . 29 5.7 Disjoint union of two sets . 29 5.8 Disjoint union of a family of sets . 30 5.9 The set of small sets . 31 6 ALF, an interactive editor for type theory . 33 1 Introduction The type theory described in this chapter has been developed by Martin-L¨of with the original aim of being a clarification of constructive mathematics. Unlike most other formalizations of mathematics, type theory is not based on predicate logic. Instead, the logical constants are interpreted within type 1This is a chapter from Handbook of Logic in Computer Science, Vol 5, Oxford University Press, October 2000 1 2 B. Nordstr¨om,K. Petersson and J. M. Smith theory through the Curry-Howard correspondence between propositions and sets [10, 22]: a proposition is interpreted as a set whose elements represent the proofs of the proposition. -
Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak1 and Gary L
Journal of Theoretical and Applied Electronic Commerce Research This paper is available online at ISSN 0718–1876 Electronic Version www.jtaer.com VOL 11 / ISSUE 1 / JANUARY 2016 / 67-83 DOI: 10.4067/S0718-18762016000100005 © 2016 Universidad de Talca - Chile Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak1 and Gary L. Borkan2 1 University of South Florida, School of Information, Tampa, FL, USA, [email protected] 2 Auraria Higher Education, Information Technology Department, Denver, CO, USA, [email protected] Received 22 September 2014; received in revised form 13 May 2015; accepted 18 May 2015 Abstract Credit cards and the subsequent payment of credit card debt play a crucial role in e-commerce transactions. While website design effects on trust and e-commerce have been studied, these are usually coarse grained models. A more individualized approach to utilization of online credit card payment services is examined that utilizes personality as measured by the Myers-Briggs personality type assessment to determine variances in perception of online payment service features. The results indicate that certain overriding principles appear to be largely universal, namely security and efficiency (or timeliness) of the payment system. However there are differences in the perceived benefit of these features and other features between personality types, which may be capitalized upon by payment service providers to attract a broader base of consumers and maintain continuance of existing users. Keywords: Credit-card, Electronic commerce, Myers-Briggs, Payment portals, Personality, Portal features 67 Personality Type Effects on Perceptions of Online Credit Card Payment Services Steven Walczak Gary L. -
Type Theory and Applications
Type Theory and Applications Harley Eades [email protected] 1 Introduction There are two major problems growing in two areas. The first is in Computer Science, in particular software engineering. Software is becoming more and more complex, and hence more susceptible to software defects. Software bugs have two critical repercussions: they cost companies lots of money and time to fix, and they have the potential to cause harm. The National Institute of Standards and Technology estimated that software errors cost the United State's economy approximately sixty billion dollars annually, while the Federal Bureau of Investigations estimated in a 2005 report that software bugs cost U.S. companies approximately sixty-seven billion a year [90, 108]. Software bugs have the potential to cause harm. In 2010 there were a approximately a hundred reports made to the National Highway Traffic Safety Administration of potential problems with the braking system of the 2010 Toyota Prius [17]. The problem was that the anti-lock braking system would experience a \short delay" when the brakes where pressed by the driver of the vehicle [106]. This actually caused some crashes. Toyota found that this short delay was the result of a software bug, and was able to repair the the vehicles using a software update [91]. Another incident where substantial harm was caused was in 2002 where two planes collided over Uberlingen¨ in Germany. A cargo plane operated by DHL collided with a passenger flight holding fifty-one passengers. Air-traffic control did not notice the intersecting traffic until less than a minute before the collision occurred. -
Combinatorial Species and Labelled Structures Brent Yorgey University of Pennsylvania, [email protected]
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 1-1-2014 Combinatorial Species and Labelled Structures Brent Yorgey University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/edissertations Part of the Computer Sciences Commons, and the Mathematics Commons Recommended Citation Yorgey, Brent, "Combinatorial Species and Labelled Structures" (2014). Publicly Accessible Penn Dissertations. 1512. http://repository.upenn.edu/edissertations/1512 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1512 For more information, please contact [email protected]. Combinatorial Species and Labelled Structures Abstract The theory of combinatorial species was developed in the 1980s as part of the mathematical subfield of enumerative combinatorics, unifying and putting on a firmer theoretical basis a collection of techniques centered around generating functions. The theory of algebraic data types was developed, around the same time, in functional programming languages such as Hope and Miranda, and is still used today in languages such as Haskell, the ML family, and Scala. Despite their disparate origins, the two theories have striking similarities. In particular, both constitute algebraic frameworks in which to construct structures of interest. Though the similarity has not gone unnoticed, a link between combinatorial species and algebraic data types has never been systematically explored. This dissertation lays the theoretical groundwork for a precise—and, hopefully, useful—bridge bewteen the two theories. One of the key contributions is to port the theory of species from a classical, untyped set theory to a constructive type theory. This porting process is nontrivial, and involves fundamental issues related to equality and finiteness; the recently developed homotopy type theory is put to good use formalizing these issues in a satisfactory way. -
John Hatcliff
John Hatcliff Curriculum Vitae April 2018 Professor Phone: (785) 532-6350 Department of Computing FAX: (785) 532-7353 and Information Sciences email: [email protected] Kansas State University WWW: http://people.cis.ksu.edu/~hatcliff Manhattan, KS 66506 USA Education Ph.D.: Computer Science, Kansas State University, Manhattan, Kansas, USA (1991-1994) M.Sc.: Computer Science, Queen's University, Kingston, Ontario, Canada (1989-1991) B.A.: Computer Science/Mathematics, Mount Vernon Nazarene College, Mount Vernon, Ohio, USA (1984-88) Interests Research Interests Safety- and security-critical systems, network-enabled medical devices and critical communication infrastructure, cyber-physical systems, risk management, regulatory policy for safety and security- critical systems, distributed system modeling and simulation, formal methods in software engineering, software verification, embedded systems, middleware, model-integrated computing, software architec- ture, static analyses of programs, concurrent and distributed systems, semantics of programming languages, logics and type theory. Teaching Interests Safety-critical systems, foundations of programming languages, software specification and verifica- tion, logic and set theory, construction of concurrent systems, compiler construction, formal language theory, software engineering, functional programming, logic programming. Employment 2011{present University Distinguished Professor, Department of Computing and Information Sci- ence, Kansas State University. 2005{2011: Professor, Department of Computing -
Innovations in Computational Type Theory Using Nuprl
Journal of Applied Logic 4 (2006) 428–469 www.elsevier.com/locate/jal Innovations in computational type theory using Nuprl S.F. Allen ∗, M. Bickford, R.L. Constable, R. Eaton, C. Kreitz, L. Lorigo, E. Moran Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA Available online 15 December 2005 Abstract For twenty years the Nuprl (“new pearl”) system has been used to develop software systems and formal theories of computational mathematics. It has also been used to explore and implement computational type theory (CTT)—a formal theory of computation closely related to Martin-Löf’s intuitionistic type theory (ITT) and to the calculus of inductive constructions (CIC) implemented in the Coq prover. This article focuses on the theory and practice underpinning our use of Nuprl for much of the last decade. We discuss innovative elements of type theory, including new type constructors such as unions and dependent intersections, our theory of classes, and our theory of event structures. We also discuss the innovative architecture of Nuprl as a distributed system and as a transactional database of formal mathematics using the notion of abstract object identifiers. The database has led to an independent project called the Formal Digital Library, FDL, now used as a repository for Nuprl results as well as selected results from HOL, MetaPRL, and PVS. We discuss Howe’s set theoretic semantics that is used to relate such disparate theories and systems as those represented by these provers. © 2005 Elsevier B.V. All rights reserved. Keywords: Martin-Löf type theory; Dependent intersection types; Union types; Polymorphic subtyping; Logic of events; Formal digital libraries; Computational type theory; Proofs as programs; Program extraction; Tactics * Corresponding author.