Einstein and the Formal Equivalence of Mass and Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Belated Decision in the Hilbert-Einstein Priority Dispute
(10). As described above, the severely opis- Dinosauria (Univ. of California Press, Berkeley, CA, However, the overall similarity of the pelvis of Archae- 1990). opteryx to those of the enantiornithine birds, espe- thopubic condition of their pelvis is consis- 10. L. Hou, L. D. Martin, Z. Zhou, A. Feduccia, Science cially the presence of the hypopubic cup, as well as tent with the notion that these birds roost- 274, 1164 (1996). the morphology of the London and Berlin Archae- ed in trees. In contrast, based primarily on 11. Q. Ji and S. Ji, Chin. Geol. 10, 30 (1996); see also V. opteryx specimens, offer support for our interpreta- disputed measurements of claw curvature, Morell, Audubon 99, 36 (1997). tion of the pelvic structure of these early birds [L. D. 12. Rather than representing primitive archosaurian Martin, in Origin of the Higher Groups of Tetrapods, Archaeopteryx has been interpreted as structures, it is probable that the hepatic-piston dia- H. P. Schultze and L. Trueb, Eds. (Cornell Univ. adapted primarily for a terrestrial rather phragm systems in crocodilians and theropods are Press, Ithaca, NY, 1991), pp. 485–540. than an arboreal existence (18). However, convergently derived. Pelvic anatomy in early “pro- 18. D. S. Peters and E. Go¨ rgner, in Proceedings of the II todinosaurs” such as Lagosuchus, as well as in all International Symposium of Avian Paleontology, K. as in the enantiornithines, the morphology ornithischian dinosaurs, shows no evidence of the Campbell, Ed. (Los Angeles Museum of Natural His- of Archaeopteryx’s pelvis is best interpreted pubis having served as a site of origin for similar tory Press, Los Angeles, CA, 1992), pp. -
Radiation Forces on Small Particles in the Solar System T
1CARUS 40, 1-48 (1979) Radiation Forces on Small Particles in the Solar System t JOSEPH A. BURNS Cornell University, 2 Ithaca, New York 14853 and NASA-Ames Research Center PHILIPPE L. LAMY CNRS-LAS, Marseille, France 13012 AND STEVEN SOTER Cornell University, Ithaca, New York 14853 Received May 12, 1978; revised May 2, 1979 We present a new and more accurate expression for the radiation pressure and Poynting- Robertson drag forces; it is more complete than previous ones, which considered only perfectly absorbing particles or artificial scattering laws. Using a simple heuristic derivation, the equation of motion for a particle of mass m and geometrical cross section A, moving with velocity v through a radiation field of energy flux density S, is found to be (to terms of order v/c) mi, = (SA/c)Qpr[(1 - i'/c)S - v/c], where S is a unit vector in the direction of the incident radiation,/" is the particle's radial velocity, and c is the speed of light; the radiation pressure efficiency factor Qpr ~ Qabs + Q~a(l - (cos a)), where Qabs and Q~c~ are the efficiency factors for absorption and scattering, and (cos a) accounts for the asymmetry of the scattered radiation. This result is confirmed by a new formal derivation applying special relativistic transformations for the incoming and outgoing energy and momentum as seen in the particle and solar frames of reference. Qpr is evaluated from Mie theory for small spherical particles with measured optical properties, irradiated by the actual solar spectrum. Of the eight materials studied, only for iron, magnetite, and graphite grains does the radiation pressure force exceed gravity and then just for sizes around 0. -
Einstein's Life and Legacy
Reflections Einstein's Life and Legacy Introduction Albert Einstein is the most luminous scientist of the past century, and ranks with Isaac Newton as one among the greatest physicists of all time. There is an enormous amount of material to choose from in talking about Einstein. He is without doubt also the most written about scientist of the past century, may be of all time. The Einstein Archives contain about 43,000 documents, and so far as I know the "Collected Papers of Albert Einstein" have only come upto 1917 with Volume 8 in English translation; another 32 volumes remain to be produced. In the face of all this, this account must be severely selective, and coherent as well. Einstein's life was incredibly rich and intense in the intellectual sense. This will become clear as I go along. In any case let me begin by presenting in Box 1 a brieflisting of a few important dates in his life, howsoever inadequate it may be. He was scientifically active essentially from 1902 upto 1935 at the highest imaginable levels, thus for more than three decades. The Miraculous Year Now let us turn to technical matters. First, a brief mention of his creative outburst of 1905, whose centenary we are celebrating this year. There were four fundamental papers, and the doctoral thesis, all in the six months from March to September. The first paper on the light quantum concept and explanation of the photo electric effect was submitted to Annalen der Physik in March; the second on Brownian Motion in May; and the third setting out the Special Theory of Relativity in June. -
Einstein and Hilbert: the Creation of General Relativity
EINSTEIN AND HILBERT: THE CREATION OF GENERAL RELATIVITY ∗ Ivan T. Todorov Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, Friedrich-Hund-Platz 1 D-37077 G¨ottingen, Germany; e-mail: [email protected] and Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria;∗∗e-mail: [email protected] ABSTRACT It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time were involved and reached a breathtaking concentration during the last month of the work. Recent controversy, raised by a much publicized 1997 reading of Hilbert’s proof- sheets of his article of November 1915, is also discussed. arXiv:physics/0504179v1 [physics.hist-ph] 25 Apr 2005 ∗ Expanded version of a Colloquium lecture held at the International Centre for Theoretical Physics, Trieste, 9 December 1992 and (updated) at the International University Bremen, 15 March 2005. ∗∗ Permanent address. Introduction Since the supergravity fashion and especially since the birth of superstrings a new science emerged which may be called “high energy mathematical physics”. One fad changes the other each going further away from accessible experiments and into mathe- matical models, ending up, at best, with the solution of an interesting problem in pure mathematics. The realization of the grand original design seems to be, decades later, nowhere in sight. For quite some time, though, the temptation for mathematical physi- cists (including leading mathematicians) was hard to resist. -
Section 22-3: Energy, Momentum and Radiation Pressure
Answer to Essential Question 22.2: (a) To find the wavelength, we can combine the equation with the fact that the speed of light in air is 3.00 " 108 m/s. Thus, a frequency of 1 " 1018 Hz corresponds to a wavelength of 3 " 10-10 m, while a frequency of 90.9 MHz corresponds to a wavelength of 3.30 m. (b) Using Equation 22.2, with c = 3.00 " 108 m/s, gives an amplitude of . 22-3 Energy, Momentum and Radiation Pressure All waves carry energy, and electromagnetic waves are no exception. We often characterize the energy carried by a wave in terms of its intensity, which is the power per unit area. At a particular point in space that the wave is moving past, the intensity varies as the electric and magnetic fields at the point oscillate. It is generally most useful to focus on the average intensity, which is given by: . (Eq. 22.3: The average intensity in an EM wave) Note that Equations 22.2 and 22.3 can be combined, so the average intensity can be calculated using only the amplitude of the electric field or only the amplitude of the magnetic field. Momentum and radiation pressure As we will discuss later in the book, there is no mass associated with light, or with any EM wave. Despite this, an electromagnetic wave carries momentum. The momentum of an EM wave is the energy carried by the wave divided by the speed of light. If an EM wave is absorbed by an object, or it reflects from an object, the wave will transfer momentum to the object. -
Theory and Experiment in the Quantum-Relativity Revolution
Theory and Experiment in the Quantum-Relativity Revolution expanded version of lecture presented at American Physical Society meeting, 2/14/10 (Abraham Pais History of Physics Prize for 2009) by Stephen G. Brush* Abstract Does new scientific knowledge come from theory (whose predictions are confirmed by experiment) or from experiment (whose results are explained by theory)? Either can happen, depending on whether theory is ahead of experiment or experiment is ahead of theory at a particular time. In the first case, new theoretical hypotheses are made and their predictions are tested by experiments. But even when the predictions are successful, we can’t be sure that some other hypothesis might not have produced the same prediction. In the second case, as in a detective story, there are already enough facts, but several theories have failed to explain them. When a new hypothesis plausibly explains all of the facts, it may be quickly accepted before any further experiments are done. In the quantum-relativity revolution there are examples of both situations. Because of the two-stage development of both relativity (“special,” then “general”) and quantum theory (“old,” then “quantum mechanics”) in the period 1905-1930, we can make a double comparison of acceptance by prediction and by explanation. A curious anti- symmetry is revealed and discussed. _____________ *Distinguished University Professor (Emeritus) of the History of Science, University of Maryland. Home address: 108 Meadowlark Terrace, Glen Mills, PA 19342. Comments welcome. 1 “Science walks forward on two feet, namely theory and experiment. ... Sometimes it is only one foot which is put forward first, sometimes the other, but continuous progress is only made by the use of both – by theorizing and then testing, or by finding new relations in the process of experimenting and then bringing the theoretical foot up and pushing it on beyond, and so on in unending alterations.” Robert A. -
MONITORING of AERODYNAMIC PRESSURES for VENUS EXPRESS in the UPPER ATMOSPHERE DURING DRAG EXPERIMENTS BASED on TELEMETRY Sylvain
MONITORING OF AERODYNAMIC PRESSURES FOR VENUS EXPRESS IN THE UPPER ATMOSPHERE DURING DRAG EXPERIMENTS BASED ON TELEMETRY Sylvain Damiani(1,2), Mathias Lauer(1), and Michael Müller(1) (1) ESA/ESOC; Robert-Bosch-Str. 5, 64293 Darmstadt, Germany; +49 6151900; [email protected] (2)GMV GmbH; Robert-Bosch-Str. 7, 64293 Darmstadt, Germany; +49 61513972970; [email protected] Abstract: The European Space Agency Venus Express spacecraft has to date successfully completed nine Aerodynamic Drag Experiment Campaigns designed in order to probe the planet's upper atmosphere over the North pole. The daily monitoring of the campaign is based on housekeeping telemetry. It consists of reducing the spacecraft dynamics in order to obtain a timely evolution of the aerodynamic torque over a pericenter passage, from which estimations of the accommodation coefficient, the dynamic pressure and the atmospheric density can be extracted. The observed surprising density fluctuations on short timescales justify the use of a conservative method to decide on the continuation of the experiments. Keywords: Venus Express, Drag Experiments, Attitude Dynamics, Aerodynamic Torque. 1. Introduction The European Space Agency's Venus Express spacecraft has been orbiting around Venus since 2006, and its mission has now been extended until 2014. During the extended mission, it has already successfully accomplished 9 Aerodynamic Drag Experiment campaigns until September 2012. Each campaign aims at probing the planet’s atmospheric density at high altitude and next to the North pole by lowering the orbit pericenter (down to 165 km of altitude), and observing its perturbations on both the orbit and the attitude of the probe. -
Forces, Light and Waves Mechanical Actions of Radiation
Forces, light and waves Mechanical actions of radiation Jacques Derouard « Emeritus Professor », LIPhy Example of comets Cf Hale-Bopp comet (1997) Exemple of comets Successive positions of a comet Sun Tail is in the direction opposite / Sun, as if repelled by the Sun radiation Comet trajectory A phenomenon known a long time ago... the first evidence of radiative pressure predicted several centuries later Peter Arpian « Astronomicum Caesareum » (1577) • Maxwell 1873 electromagnetic waves Energy flux associated with momentum flux (pressure): a progressive wave exerts Pressure = Energy flux (W/m2) / velocity of wave hence: Pressure (Pa) = Intensity (W/m2) / 3.10 8 (m/s) or: Pressure (nanoPa) = 3,3 . I (Watt/m2) • NB similar phenomenon with acoustic waves . Because the velocity of sound is (much) smaller than the velocity of light, acoustic radiative forces are potentially stronger. • Instead of pressure, one can consider forces: Force = Energy flux x surface / velocity hence Force = Intercepted power / wave velocity or: Force (nanoNewton) = 3,3 . P(Watt) Example of comet tail composed of particles radius r • I = 1 kWatt / m2 (cf Sun radiation at Earth) – opaque particle diameter ~ 1µm, mass ~ 10 -15 kg, surface ~ 10 -12 m2 – then P intercepted ~ 10 -9 Watt hence F ~ 3,3 10 -18 Newton comparable to gravitational attraction force of the sun at Earth-Sun distance Example of comet tail Influence of the particles size r • For opaque particles r >> 1µm – Intercepted power increases like the cross section ~ r2 thus less strongly than gravitational force that increases like the mass ~ r3 Example of comet tail Influence of the particles size r • For opaque particles r << 1µm – Solar radiation wavelength λ ~0,5µm – r << λ « Rayleigh regime» – Intercepted power varies like the cross section ~ r6 thus decreases much stronger than gravitational force ~ r3 Radiation pressure most effective for particles size ~ 1µm Another example Ashkin historical experiment (1970) A. -
INFLUENCE of SOLAR RADIATION PRESSURE on ORBITAL ECCENTRICITY of a GRAVITY-GRADIENT-ORIENTED LENTICULAR SATELLITE by William M
NASA TECHNICAL NOTE NASA TN D-2715 e- e- - -- (5- / --I -=e3-m INFLUENCE OF SOLAR RADIATION PRESSURE ON ORBITAL ECCENTRICITY OF A GRAVITY-GRADIENT-ORIENTED LENTICULAR SATELLITE by William M. Adams, Jr., and Ward F. Hodge Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 0 MARCH 1965 / t 1 TECH LIBRARY KAFB, "I I llllll11111 llllI11111111111111111l11 lilt 1111 0079733 INFLUENCE OF SOLAR RADIATION PRESSURE ON ORBITAL ECCENTRICITY OF A GRAVITY-GRADIENT-ORIENTED LENTICULAR SATELLITE By William M. Adams, Jr., and Ward F. Hodge Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sole by the Office of Technical Services, Deportment of Commerce, Woshington, D.C. 20230 -- Price $1.00 ... ~ I I INFLUENCE OF SOLAR RADIATION PRESSURE ON ORBITAL ECCENTRICITY OF A GRAVITY-GRADIENT-ORIENTED LENTICULAR SATEUITE By William M. Adams, Jr., and Ward F. HoQe Langley Research Center A method is presented for calculating the perturbations of the orbital elements of a low-density lenticular satellite due to solar radiation pressure. The necessary calculations are performed by means of the digital computer. Typ- ical results are presented for seven orbital inclinations ranging from 0' to ll3O for a perfectly absorptive satellite initially in a nearly circular 2,000- nautical-mile orbit. The information obtained indicates that the change in eccentricity caused by solar radiation pressure becomes large enough for all the inclinations con- sidered to cause attitude-control problems with the gravity-gradient stabiliza- tion system. A nearly circular orbit appears necessary for lenticular satel- lites since the ability of gravity gradient attitude control systems to damp the pitching libration induced by elliptic orbital motion is still in doubt. -
How Stars Work: • Basic Principles of Stellar Structure • Energy Production • the H-R Diagram
Ay 122 - Fall 2004 - Lecture 7 How Stars Work: • Basic Principles of Stellar Structure • Energy Production • The H-R Diagram (Many slides today c/o P. Armitage) The Basic Principles: • Hydrostatic equilibrium: thermal pressure vs. gravity – Basics of stellar structure • Energy conservation: dEprod / dt = L – Possible energy sources and characteristic timescales – Thermonuclear reactions • Energy transfer: from core to surface – Radiative or convective – The role of opacity The H-R Diagram: a basic framework for stellar physics and evolution – The Main Sequence and other branches – Scaling laws for stars Hydrostatic Equilibrium: Stars as Self-Regulating Systems • Energy is generated in the star's hot core, then carried outward to the cooler surface. • Inside a star, the inward force of gravity is balanced by the outward force of pressure. • The star is stabilized (i.e., nuclear reactions are kept under control) by a pressure-temperature thermostat. Self-Regulation in Stars Suppose the fusion rate increases slightly. Then, • Temperature increases. (2) Pressure increases. (3) Core expands. (4) Density and temperature decrease. (5) Fusion rate decreases. So there's a feedback mechanism which prevents the fusion rate from skyrocketing upward. We can reverse this argument as well … Now suppose that there was no source of energy in stars (e.g., no nuclear reactions) Core Collapse in a Self-Gravitating System • Suppose that there was no energy generation in the core. The pressure would still be high, so the core would be hotter than the envelope. • Energy would escape (via radiation, convection…) and so the core would shrink a bit under the gravity • That would make it even hotter, and then even more energy would escape; and so on, in a feedback loop Ë Core collapse! Unless an energy source is present to compensate for the escaping energy. -
Mercury Orbit Insertion March 18, 2011 UTC (March 17, 2011 EDT)
Mercury Orbit Insertion March 18, 2011 UTC (March 17, 2011 EDT) A NASA Discovery Mission Media Contacts NASA Headquarters Policy/Program Management Dwayne C. Brown (202) 358-1726 [email protected] The Johns Hopkins University Applied Physics Laboratory Mission Management, Spacecraft Operations Paulette W. Campbell (240) 228-6792 or (443) 778-6792 [email protected] Carnegie Institution of Washington Principal Investigator Institution Tina McDowell (202) 939-1120 [email protected] Mission Overview Key Spacecraft Characteristics MESSENGER is a scientific investigation . Redundant major systems provide critical backup. of the planet Mercury. Understanding . Passive thermal design utilizing ceramic-cloth Mercury, and the forces that have shaped sunshade requires no high-temperature electronics. it, is fundamental to understanding the . Fixed phased-array antennas replace a deployable terrestrial planets and their evolution. high-gain antenna. The MESSENGER (MErcury Surface, Space . Custom solar arrays produce power at safe operating ENvironment, GEochemistry, and Ranging) temperatures near Mercury. spacecraft will orbit Mercury following three flybys of that planet. The orbital phase will MESSENGER is designed to answer six use the flyby data as an initial guide to broad scientific questions: perform a focused scientific investigation of . Why is Mercury so dense? this enigmatic world. What is the geologic history of Mercury? MESSENGER will investigate key . What is the nature of Mercury’s magnetic field? scientific questions regarding Mercury’s . What is the structure of Mercury’s core? characteristics and environment during . What are the unusual materials at Mercury’s poles? these two complementary mission phases. What volatiles are important at Mercury? Data are provided by an optimized set of miniaturized space instruments and the MESSENGER provides: spacecraft tele commun ications system. -
String Theory, Einstein, and the Identity of Physics: Theory Assessment in Absence of the Empirical
String theory, Einstein, and the identity of physics: Theory assessment in absence of the empirical Jeroen van Dongen Institute for Theoretical Physics Vossius Center for History of the Humanities and Sciences University of Amsterdam, Amsterdam, The Netherlands Abstract String theorists are certain that they are practicing physicists. Yet, some of their recent critics deny this. This paper argues that this conflict is really about who holds authority in making rational judgment in theoretical physics. At bottom, the conflict centers on the question: who is a proper physicist? To illustrate and understand the differing opinions about proper practice and identity, we discuss different appreciations of epistemic virtues and explanation among string theorists and their critics, and how these have been sourced in accounts of Einstein’s biography. Just as Einstein is claimed by both sides, historiography offers examples of both successful and unsuccessful non-empirical science. History of science also teaches that times of conflict are often times of innovation, in which novel scholarly identities may come into being. At the same time, since the contributions of Thomas Kuhn historians have developed a critical attitude towards formal attempts and methodological recipes for epistemic demarcation and justification of scientific practice. These are now, however, being considered in the debate on non-empirical physics. Introduction Theoretical high energy physics is in crisis. Many physicists may wish to deny this, but it is richly illustrated by the heated exchanges, charged manifestos and exclamations of despair in highly visible publications. For example, three prominent cosmologists, Anna Ijjas, Paul Steinhardt and Abraham Loeb, argued in the February 2017 issue of Scientific American that the long favoured model for the early universe, inflationary cosmology, has no data to support it and has gone through so many patch-ups that it is now beyond testability.