Methods and Philosophy of Statistical Process Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Finland—Selected Issues and Statistical Appendix
O1996 International Monetary Fund September 1996 IMF Staff Country Report No. 96/95 Finland—Selected Issues and Statistical Appendix This report on selected issues and statistical appendix on Finland was prepared by a staff team of the International Monetary Fund as background documentation for the periodic consultation with this member country. As such, the views expressed in this document are those of the staff team and do not necessarily reflect the views of the Government of Finland or the Executive Board of the IMF. Copies of this report are available to the public from International Monetary Fund • Publication Services 700 19th Street, N.W. • Washington, D.C. 20431 Telephone: (202) 623-7430 • Telefax: (202) 623-7201 Telex (RCA): 248331 IMF UR Internet: [email protected] Price: $15.00 a copy International Monetary Fund Washington, D.C. ©International Monetary Fund. Not for Redistribution This page intentionally left blank ©International Monetary Fund. Not for Redistribution INTERNATIONAL MONETARY FUND FINLAND Selected Issues and Statistical Appendix Prepared by T. Feyzioglu, D. Tambakis (both EU1) and C. Pazarbasioglu (MAE) Approved by the European I Department July 10, 1996 Contents Page I. Inflation and Wage Dynamics in Finland: A Cointegration Approach 1 1. Introduction and summary 1 2 . Data sources and statistical properties 4 a. Data sources and definitions 4 b. Order of integration 4 3. Empirical estimates 6 a. Modeling strategy 6 b. Cointegration and error correction 8 c. Model multipliers 10 4. Outlook for CPI and nominal wage inflation: 1996-2001 14 a. Baseline scenario 14 b. Alternative scenario: further depreciation in 1996 17 References 20 II. -
Using Likelihood Ratios to Compare Run Chart Rules on Simulated Data Series
RESEARCH ARTICLE Diagnostic Value of Run Chart Analysis: Using Likelihood Ratios to Compare Run Chart Rules on Simulated Data Series Jacob Anhøj* Centre of Diagnostic Evaluation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark * [email protected] Abstract Run charts are widely used in healthcare improvement, but there is little consensus on how to interpret them. The primary aim of this study was to evaluate and compare the diagnostic a11111 properties of different sets of run chart rules. A run chart is a line graph of a quality measure over time. The main purpose of the run chart is to detect process improvement or process degradation, which will turn up as non-random patterns in the distribution of data points around the median. Non-random variation may be identified by simple statistical tests in- cluding the presence of unusually long runs of data points on one side of the median or if the graph crosses the median unusually few times. However, there is no general agreement OPEN ACCESS on what defines “unusually long” or “unusually few”. Other tests of questionable value are Citation: Anhøj J (2015) Diagnostic Value of Run frequently used as well. Three sets of run chart rules (Anhoej, Perla, and Carey rules) have Chart Analysis: Using Likelihood Ratios to Compare been published in peer reviewed healthcare journals, but these sets differ significantly in Run Chart Rules on Simulated Data Series. PLoS their sensitivity and specificity to non-random variation. In this study I investigate the diag- ONE 10(3): e0121349. doi:10.1371/journal. pone.0121349 nostic values expressed by likelihood ratios of three sets of run chart rules for detection of shifts in process performance using random data series. -
Approaches for Detection of Unstable Processes: a Comparative Study Yerriswamy Wooluru J S S Academy of Technical Education, Bangalore, India, [email protected]
Journal of Modern Applied Statistical Methods Volume 14 | Issue 2 Article 17 11-1-2015 Approaches for Detection of Unstable Processes: A Comparative Study Yerriswamy Wooluru J S S Academy of Technical Education, Bangalore, India, [email protected] D. R. Swamy J S S Academy of Technical Education, Bangalore, India P. Nagesh JSS Centre for Management Studies, Mysore, Indi Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Wooluru, Yerriswamy; Swamy, D. R.; and Nagesh, P. (2015) "Approaches for Detection of Unstable Processes: A Comparative Study," Journal of Modern Applied Statistical Methods: Vol. 14 : Iss. 2 , Article 17. DOI: 10.22237/jmasm/1446351360 Available at: http://digitalcommons.wayne.edu/jmasm/vol14/iss2/17 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Approaches for Detection of Unstable Processes: A Comparative Study Cover Page Footnote This work is supported by JSSMVP Mysore. I, sincerely thank to my Guide Dr.Swamy D.R, Professor and Head of the Department, Industrial Engineering &Management, JSSATE Bangalore and Co-Guide Dr P.Nagesh, Professor, Department of Management studies, SJCE, Mysore. This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol14/ iss2/17 Journal of Modern Applied Statistical Methods Copyright © 2015 JMASM, Inc. November 2015, Vol. 14 No. -
Run Charts Revisited: a Simulation Study of Run Chart Rules for Detection of Non- Random Variation in Health Care Processes
RESEARCH ARTICLE Run Charts Revisited: A Simulation Study of Run Chart Rules for Detection of Non- Random Variation in Health Care Processes Jacob Anhøj1*, Anne Vingaard Olesen2 1. Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 2. University of Aalborg, Danish Center for Healthcare Improvements, Department of Business and Management, Aalborg, Denmark *[email protected] Abstract Background: A run chart is a line graph of a measure plotted over time with the median as a horizontal line. The main purpose of the run chart is to identify process improvement or degradation, which may be detected by statistical tests for non- random patterns in the data sequence. Methods: We studied the sensitivity to shifts and linear drifts in simulated processes using the shift, crossings and trend rules for detecting non-random variation in run charts. Results: The shift and crossings rules are effective in detecting shifts and drifts in OPEN ACCESS process centre over time while keeping the false signal rate constant around 5% Citation: Anhøj J, Olesen AV (2014) Run Charts Revisited: A Simulation Study of Run Chart Rules and independent of the number of data points in the chart. The trend rule is virtually for Detection of Non-Random Variation in Health useless for detection of linear drift over time, the purpose it was intended for. Care Processes. PLoS ONE 9(11): e113825. doi:10.1371/journal.pone.0113825 Editor: Robert K. Hills, Cardiff University, United Kingdom Received: February 24, 2014 Accepted: November 1, 2014 Introduction Published: November 25, 2014 Plotting measurements over time turns out, in my view, to be one of the most Copyright: ß 2014 Anhøj, Olesen. -
A Guide to Creating and Interpreting Run and Control Charts Turning Data Into Information for Improvement Using This Guide
Institute for Innovation and Improvement A guide to creating and interpreting run and control charts Turning Data into Information for Improvement Using this guide The NHS Institute has developed this guide as a reminder to commissioners how to create and analyse time-series data as part of their improvement work. It should help you ask the right questions and to better assess whether a change has led to an improvement. Contents The importance of time based measurements .........................................4 Run Charts ...............................................6 Control Charts .......................................12 Process Changes ....................................26 Recommended Reading .........................29 The Improving immunisation rates importance Before and after the implementation of a new recall system This example shows yearly figures for immunisation rates of time-based before and after a new system was introduced. The aggregated measurements data seems to indicate the change was a success. 90 Wow! A “significant improvement” from 86% 79% to 86% -up % take 79% 75 Time 1 Time 2 Conclusion - The change was a success! 4 Improving immunisation rates Before and after the implementation of a new recall system However, viewing how the rates have changed within the two periods tells a 100 very different story. Here New system implemented here we see that immunisation rates were actually improving until the new 86% – system was introduced. X They then became worse. 79% – Seeing this more detailed X 75 time based picture prompts a different response. % take-up Now what do you conclude about the impact of the new system? 50 24 Months 5 Run Charts Elements of a run chart A run chart shows a measurement on the y-axis plotted over time (on the x-axis). -
Recent Debates on Monetary Condition and Inflation Pressures on the Mainland Call for an Analysis on the Inflation Dynamics and Their Main Determinants
Research Memorandum 04/2005 March 2005 MONEY AND INFLATION IN CHINA Key points: • Recent debates on monetary condition and inflation pressures on the Mainland call for an analysis on the inflation dynamics and their main determinants. A natural starting point for the econometric analysis of monetary and inflation developments is the notion of monetary equilibrium. • This paper presents an estimate of the long-run demand for money in China. The estimated long-run income elasticity is rather stable over time and consistent with that estimated in earlier studies. • The difference between the estimated demand for money and the actual money stock provides an estimate of monetary disequilibria. These seem to provide leading information about CPI inflation in the sample period. At the current conjuncture, the measure suggests that monetary conditions have tightened since the macroeconomic adjustment started in early 2004. • Additionally, an error-correction model based on the long-run money demand function offers insights into the short-run and long-run inflation dynamics. Specifically: ¾ Over the longer term, inflation is mostly caused by monetary expansion. ¾ The price level responds to monetary shocks with lags and on average it takes about 20 quarters for the impact of a permanent monetary shock to peak. This suggests the need for early policy actions to curb inflation pressure given the long policy operation lag. Prepared by : Stefan Gerlach and Janet Kong Research Department Hong Kong Monetary Authority I. INTRODUCTION Concerns have been raised recently about overheating pressures in the economy of Mainland China (see, for example, Kalish 2004, Bradsher 2004, and Ignatius 2004). -
Transforming Your Way to Control Charts That Work
Transforming Your Way to Control Charts That Work November 19, 2009 Richard L. W. Welch Associate Technical Fellow Robert M. Sabatino Six Sigma Black Belt Northrop Grumman Corporation Approved for Public Release, Distribution Unlimited: 1 Northrop Grumman Case 09-2031 Dated 10/22/09 Outline • The quest for high maturity – Why we use transformations • Expert advice • Observations & recommendations • Case studies – Software code inspections – Drawing errors • Counterexample – Software test failures • Summary Approved for Public Release, Distribution Unlimited: 2 Northrop Grumman Case 09-2031 Dated 10/22/09 The Quest for High Maturity • You want to be Level 5 • Your CMMI appraiser tells you to manage your code inspections with statistical process control • You find out you need control charts • You check some textbooks. They say that “in-control” looks like this Summary for ln(COST/LOC) ASU Log Cost Model ASU Peer Reviews Using Lognormal Probability Density Function ) C O L d o M / w e N r e p s r u o H ( N L 95% Confidence Intervals 4 4 4 4 4 4 4 4 4 4 Mean -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 r r y n n n l l l g a p a u u u Ju Ju Ju u M A J J J - - - A - - -M - - - 3 2 9 - Median 4 8 9 8 3 8 1 2 2 9 2 2 1 2 2 1 Review Closed Date ASU Eng Checks & Elec Mtngs • You collect some peer review data • You plot your data . A typical situation (like ours, 5 years ago) 3 Approved for Public Release, Distribution Unlimited: Northrop Grumman Case 09-2031 Dated 10/22/09 The Reality Summary for Cost/LOC The data Probability Plot of Cost/LOC Normal 99.9 99 -
Stat 3411 Fall 2012 Exam 1
Stat 3411 Fall 2012 Exam 1 The questions will cover material from assignments, classroom examples, posted lecture notes, and the text reading material corresponding to the points covered in class. If there is a concept in the book that is not covered in the posted lecture notes, in class, or on assignments, I won't ask you anything about that topic. The questions will be chosen so that the required arithmetic and other work is minimal in order to fit questions into 55 minutes. Plotting, if any, you are asked to do will be very quick and simple. o See problem 6 on the posted chapter 3 sample exam questions. Make use of information posted on the class web site, http://www.d.umn.edu/~rregal/stat3411.html Stat 3411 Syllabus Notes NIST Engineering Statistics Handbook National Institute of Standards and Technology Assignments Data Sets, Statistics Primer, and Examples Project Exam Information Sample Exam Questions From the Notes link: Chapters 1 and 2 1.1 Engineering Statistics: What and Why 1.2 Basic Terminology 1.3 Measurement: Its Importance and Difficulty 1.4 Mathematical Models, Reality, and Data Analysis 2.1 General Principles in the Collection of Engineering Data 2.2 Sampling in Enunerative Studies 2.3 Principles for Effective Experimentation 2.4 Some Common Experimental Designs 2.5 Collecting Engineering Data Outline Notes Guitar Strings: Use of Experimental Design Sticker Adhesion: Use of Models Testing Golf Clubs Observational and Experimental Studies: Ford Explorer Rollovers Excel: Factorial Randomization Table B1: Random Digits The first two chapters concerned basic ideas that go into designing studies and collecting data. -
Overview of Statistical Process Control Part 1 by Christopher Henderson in This Article, We Begin to Provide a Four-Part Overview of Statistical Process Control
Issue 117 March 2019 Overview of Statistical Process Control Part 1 By Christopher Henderson In this article, we begin to provide a four-part overview of statistical process control. Page 1 Overview of Here is the outline. First, we’ll introduce the basics of statistical Statistical Process process control, including the motivation for statistical process Control Part 1 control. We’ll discuss control chart basics, including how to set up a control chart, and how to monitor a control chart. We’ll then discuss process capability index. Page 5 Technical Tidbit We begin by introducing statistical process control. Statistical Process Control, or SPC, is a collection of problem-solving tools the industry uses to achieve process stability and reduce variability in a Page 8 Ask the Experts process. This could be a manufacturing or testing process. The primary visualization tool for SPC is the control chart. This chart was developed by Dr. Walter Shewhart, who worked at Bell Laboratories Page 10 Spotlight back in the 1920s. Why is statistical process control important? If we back up for a minute to think about the problem from a philosophical point of view, Page 13 Upcoming Courses we can’t fix problems unless we first understand them. The question then would be, “okay, how do we understand them?” We do this by taking measurements, and in particular, measurements of pertinent parameters. We may not know which parameters are important priority ahead of time, so this may require trial and error. Once we have our measurement values, what do we do with them? The next Issue 117 March 2019 step is to utilize mathematical models—in particular, statistics—to organize the data, track it, and look for changes. -
Chapter 15 Statistics for Quality: Control and Capability
Aaron_Amat/Deposit Photos Statistics for Quality: 15 Control and Capability Introduction CHAPTER OUTLINE For nearly 100 years, manufacturers have benefited from a variety of statis tical tools for the monitoring and control of their critical processes. But in 15.1 Statistical Process more recent years, companies have learned to integrate these tools into their Control corporate management systems dedicated to continual improvement of their 15.2 Variable Control processes. Charts ● Health care organizations are increasingly using quality improvement methods 15.3 Process Capability to improve operations, outcomes, and patient satisfaction. The Mayo Clinic, Johns Indices Hopkins Hospital, and New York-Presbyterian Hospital employ hundreds of quality professionals trained in Six Sigma techniques. As a result of having these focused 15.4 Attribute Control quality professionals, these hospitals have achieved numerous improvements Charts ranging from reduced blood waste due to better control of temperature variation to reduced waiting time for treatment of potential heart attack victims. ● Acushnet Company is the maker of Titleist golf balls, which is among the most popular brands used by professional and recreational golfers. To maintain consistency of the balls, Acushnet relies on statistical process control methods to control manufacturing processes. ● Cree Incorporated is a market-leading innovator of LED (light-emitting diode) lighting. Cree’s light bulbs were used to glow several venues at the Beijing Olympics and are being used in the first U.S. LED-based highway lighting system in Minneapolis. Cree’s mission is to continually improve upon its manufacturing processes so as to produce energy-efficient, defect-free, and environmentally 15-1 19_psbe5e_10900_ch15_15-1_15-58.indd 1 09/10/19 9:23 AM 15-2 Chapter 15 Statistics for Quality: Control and Capability friendly LEDs. -
How Do We Know That a Change Is an Improvement?
How Do We Know that a Change is an Improvement? Presenters: Farashta Zainal, MBA, PMP Senior Improvement Advisor Joy Dionisio, MPH Improvement Advisor June 30, 2020 Webinar Instructions Figure 1 Figure 2 ***There are two options to Switch Connection to telephone audio. 2 Webinar Instructions • All participants have been muted Figure 1 to eliminate any possible noise/ interference/distraction. • Please take a moment and open your chat box by clicking the chat icon found at the bottom of your screen and as shown in Figure 1. • Be sure to select “All Participants” when sending a message. • If you have any questions, please type your questions into the chat box, and they will be answered throughout the presentation. Conflict of Interest All presenters have signed a conflict of interest form and have declared that there is no conflict of interest and nothing to disclose for this presentation. 4 Learning Objectives 1 2 3 Understand the Learn how to Understand the importance of construct run role of data context to charts using measurement in interpret current special cause improvement and be able to develop data variation a data collection plan and strategies for implementing it 5 Review Session 1 Model for Improvement What are we trying to accomplish? How will we know that a change is an improvement? What changes can we make that will result in improvement? Act Plan Study Do From Associates in Process Improvement. 6 Review Session I – Aim Statement • Aim statements should meet the SMART criteria: • Specific • Measureable • Achievable Ambitious -
Quality Control I: Control of Location
Lecture 12: Quality Control I: Control of Location 10 October 2005 This lecture and the next will be about quality control methods. There are two reasons for this. First, it’s intrinsically important for engineering, but the basic math is all stuff we’ve seen already — mostly, it’s the central limit theorem. Second, it will give us a fore-taste of the issues which will come up in the second half of the course, on statistical inference. Your textbook puts quality control in the last chapter, but we’ll go over it here instead. 1 Random vs. Systematic Errors An important basic concept is to distinguish between two kinds of influences which can cause errors in a manufacturing process, or introduce variability into anything. On the one hand, there are systematic influences, which stem from particular factors, influence the process in a consistent way, and could be cor- rected by manipulating those factors. This is the mis-calibrated measuring in- strument, defective materials, broken gears in a crucial machine, or the worker who decides to shut off the cement-stirer while he finishes his bottle of vodka. In quality control, these are sometimes called assignable causes. In principle, there is someone to blame for things going wrong, and you can find out who that is and stop them. On the other hand, some errors and variability are due to essentially random, statistical or noise factors, the ones with no consistent effect and where there’s really no one to blame — it’s just down to the fact that the world is immensely complicated, and no process will ever work itself out exactly the same way twice.