Preparation and Properties of Chalcogenide Glasses In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The American Ceramic Society 25Th International Congress On
The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings. -
Technical Glasses
Technical Glasses Physical and Technical Properties 2 SCHOTT is an international technology group with 130 years of ex perience in the areas of specialty glasses and materials and advanced technologies. With our highquality products and intelligent solutions, we contribute to our customers’ success and make SCHOTT part of everyone’s life. For 130 years, SCHOTT has been shaping the future of glass technol ogy. The Otto Schott Research Center in Mainz is one of the world’s leading glass research institutions. With our development center in Duryea, Pennsylvania (USA), and technical support centers in Asia, North America and Europe, we are present in close proximity to our customers around the globe. 3 Foreword Apart from its application in optics, glass as a technical ma SCHOTT Technical Glasses offers pertinent information in terial has exerted a formative influence on the development concise form. It contains general information for the deter of important technological fields such as chemistry, pharma mination and evaluation of important glass properties and ceutics, automotive, optics, optoelectronics and information also informs about specific chemical and physical character technology. Traditional areas of technical application for istics and possible applications of the commercial technical glass, such as laboratory apparatuses, flat panel displays and glasses produced by SCHOTT. With this brochure, we hope light sources with their various requirements on chemical to assist scientists, engineers, and designers in making the physical properties, have led to the development of a great appropriate choice and make optimum use of SCHOTT variety of special glass types. Through new fields of appli products. cation, particularly in optoelectronics, this variety of glass types and their modes of application have been continually Users should keep in mind that the curves or sets of curves enhanced, and new forming processes have been devel shown in the diagrams are not based on precision measure oped. -
Synthesis of Alum from Aluminum
Synthesis of Alum from Aluminum Taken from Central Oregon College Chemistry Manual OBJECTIVES: To carry out a series of reactions to transform a piece of aluminum foil into crystals of alum and to gain familiarity with using stoichiometry to determine the yield for the reaction. SAFETY AND DISPOSAL: Strong acids and bases are corrosive and should be handled with care. Immediately wipe up any spills and wash hands with plenty of soap and water. Work in the mini-hoods whenever possible to avoid breathing in fumes. All solutions can be disposed of down the sink with running water. The alum can be safely disposed of in the trash but has a number of uses and can be used for other laboratories, place alum crystals into the designated container. INTRODUCTION: Aluminum is a material that you may have had some experience with and paid little attention to, but has some very interesting characteristics. Here are some fun facts about aluminum metal: 1. Aluminum is the third most abundant element in the earth's crust. 2. The supply of aluminum ore is not inexhaustible. 3. The winning, or extraction of the metallic form an impure ionic source, of aluminum from aluminum ore is very costly from an energy point of view. 4. The above point explains why Napoleon III used aluminum dinnerware for his state dinners. Lesser guests were served on plates of gold or silver. 5. The process of obtaining pure metallic aluminum from aluminum oxide in a reasonably energy efficient manner, which made it possible for aluminum to be the inexpensive metal we know today, was developed in a home laboratory shortly after the chemist finished his undergraduate degree. -
Crystallization Kinetics of Chalcogenide Glasses
2 Crystallization Kinetics of Chalcogenide Glasses Abhay Kumar Singh Department of Physics, Banaras Hindu University, Varanasi, India 1. Introduction 1.1 Background of chalcogenides Chalcogenide glasses are disordered non crystalline materials which have pronounced tendency their atoms to link together to form link chain. Chalcogenide glasses can be obtained by mixing the chalcogen elements, viz, S, Se and Te with elements of the periodic table such as Ga, In, Si, Ge, Sn, As, Sb and Bi, Ag, Cd, Zn etc. In these glasses, short-range inter-atomic forces are predominantly covalent: strong in magnitude and highly directional, whereas weak van der Waals' forces contribute significantly to the medium-range order. The atomic bonding structure is, in general more rigid than that of organic polymers and more flexible than that of oxide glasses. Accordingly, the glass-transition temperatures and elastic properties lay in between those of these materials. Some metallic element containing chalcogenide glasses behave as (super) ionic conductors. These glasses also behave as semiconductors or, more strictly, they are a kind of amorphous semi-conductors with band gap energies of 1±3eV (Fritzsche, 1971). Commonly, chalcogenide glasses have much lower mechanical strength and thermal stability as compared to existing oxide glasses, but they have higher thermal expansion, refractive index, larger range of infrared transparency and higher order of optical non-linearity. It is difficult to define with accuracy when mankind first fabricated its own glass but sources demonstrate that it discovered 10,000 years back in time. It is also difficult to point in time, when the field of chalcogenide glasses started. -
Hybrid Polymer Photonic Crystal Fiber with Integrated Chalcogenide Glass Nanofilms
View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms Markos, Christos; Kubat, Irnis; Bang, Ole Published in: Scientific Reports Link to article, DOI: 10.1038/srep06057 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Markos, C., Kubat, I., & Bang, O. (2014). Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Scientific Reports, 4. DOI: 10.1038/srep06057 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. OPEN Hybrid polymer photonic crystal fiber SUBJECT AREAS: with integrated chalcogenide glass POLYMERS NONLINEAR OPTICS nanofilms Christos Markos, Irnis Kubat & Ole Bang Received 10 March 2014 DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. -
Ultrafast-Laser-Inscribed 3D Integrated Photonics: Challenges and Emerging Applications
Nanophotonics 2015; 4:332–352 Review Article Open Access S. Gross* and M. J. Withford Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications DOI 10.1515/nanoph-2015-0020 ing methods used to create photonic chips are relatively Received July 7, 2015; accepted July 30, 2015 immature, and the common approach is to adapt the pla- nar (2D) lithography methods originally developed for sil- Abstract: Since the discovery that tightly focused fem- icon microelectronics. Unfortunately, this is akin to push- tosecond laser pulses can induce a highly localised and ing a square peg into a round hole because photons, the permanent refractive index modification in a large num- elementary particle of light, have many degrees of free- ber of transparent dielectrics, the technique of ultrafast dom, in contrast to electrons which have few. For exam- laser inscription has received great attention from a wide ple, a stream of electrons can be characterised in terms range of applications. In particular, the capability to create of current and voltage. A stream of photons, on the other three-dimensional optical waveguide circuits has opened hand, can exhibit different traits based on velocity and up new opportunities for integrated photonics that would brightness, the optical equivalent to current and voltage as not have been possible with traditional planar fabrication well as wavelength, polarisation, spatial mode and orbital techniques because it enables full access to the many de- angular momentum. These additional features reflect the grees of freedom in a photon. This paper reviews the basic three dimensionality of light, features that cannot be fully techniques and technological challenges of 3D integrated exploited with planar circuitry. -
Investigation of Index of Refraction Changes in Chalcogenide Glasses During Molding Processes
Investigation of index of refraction changes in chalcogenide glasses during molding processes. Jacklyn Novak1, Ray Pini1, William V. Moreshead1, Erik Stover2, Alan Symmons1 1LightPath Technologies, Inc., 2603 Challenger Tech Ct, Ste 100, Orlando, FL, USA 32826 2M3 Measurement Solutions, Inc., 2048 Aldergrove Ave, Suite D, Escondido, CA 92029 ABSTRACT Precision glass molding has a well-documented effect of a decrease in the index of refraction of the glass during the molding process. This index drop has such significant value that optical designs for molded lenses must take into account the index drop to accurately determine the optical performance of the final lens. Widespread adoption of chalcogenide glasses for molded infrared optics has raised a series of questions as to the behavior of these glasses under molding conditions. This paper will investigate the index of refraction changes in two different chalcogenide glasses and determine if these changes are significant enough for optical designers to consider in their designs. Keywords: Precision glass molding, chalcogenide glass, refractive index, infrared 1. INTRODUCTION Until recently, the only materials used for infrared optics were salts and crystals such as germanium or zinc selenide. These materials require expensive processing techniques and the materials themselves also have a high cost. Chalcogenide glasses (ChGs) were invented to meet the increasing demand for low-cost infrared optics. Examples of ChGs include Ge28Sb12Se60 and As40Se60. These materials are less expensive due to containing little to no germanium. Processing costs are also reduced because ChGs are moldable. Precision glass molding (PGM) is an alternative to traditional methods of producing high quality optical lenses. -
Bespoke Photonic Devices Using Ultrafast Laser Driven Ion Migration in Glasses ⇑ T.T
Progress in Materials Science 94 (2018) 68–113 Contents lists available at ScienceDirect Progress in Materials Science journal homepage: www.elsevier.com/locate/pmatsci Bespoke photonic devices using ultrafast laser driven ion migration in glasses ⇑ T.T. Fernandez a,1, M. Sakakura b,1, S.M. Eaton a, B. Sotillo a, , J. Siegel c, J. Solis c, Y. Shimotsuma d, K. Miura d a Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, Italy b Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom c Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Científicas (IO,CSIC), Madrid, Spain d Department of Materials Chemistry, Kyoto University, Kyoto, Japan article info abstract Article history: This Review provides an exhaustive and detailed description of ion migration phenomena Received 16 August 2016 which occur inside transparent dielectric media due to the interaction with intense ultra- Accepted 20 December 2017 short pulses. The paper differentiates various processes underlying the ion migration influ- Available online 29 December 2017 enced by simultaneous heat accumulation and diffusion. The femtosecond laser induced temperature distribution, the major driving force of ions in dielectrics, is described in detail. Keywords: This discussion is based on three meticulous analysis methods including the thermal modi- Femtosecond laser micromachining fication of transparent dielectrics at various ambient temperatures, numerical simulations Ion-migration and comparison with direct observation of the light-matter interaction and micro-Raman Scanning electron microscope Glass spectroscopy. The ion migration phenomena studied have been triggered in four different Waveguides configurations: at low repetition and high repetition rates, and observations perpendicular Photonic devices and parallel to the laser irradiation direction. -
Uilitgd States Patent [19] [11] Patent Number: 4,647,386 Jamison [45] Date of Patent: Mar
UIlItGd States Patent [19] [11] Patent Number: 4,647,386 Jamison [45] Date of Patent: Mar. 3, 1987 [54] INTERCALATED TRANSITION METAL Attorney, Agent, or Firm-—Robert E. Harris BASED SOLID LUBRICATING COMPOSITION AND METHOD OF SO [57] ABSTRACT , FORMING A solid lubricating composition and method for form ing such a composition are disclosed. The composition [76] Inventor: Warren E. Jamison, 528 Parkview Ave., Golden, Colo. 80401 is formed by intercalating a transition metal that has been chemically reacted with chalcogen to form a lay [21] App]. No.: 538,137 ered structure. The transition metal is selected from [22] Filed: Oct. 3, 1983 niobium, tantalum, tungsten and/or an alloy including one or more, and the transition metal is chemically [51] Int. Cl.4 ......................................... .. C10M 125/22 combined with chalcogen selected from sulfur, sele [52] US. Cl. ...................... .. 252/25; 423/561 R nium and/or a combination which can also include [5 8] Field of Search ..................... .. 252/25; 423/561 R tellurium to form a layered transition metal dischal [56] References Cited cogenide prior to intercalation with a metal, preferably U.S. PATENT DOCUMENTS a coinage metal. The effect of intercalation is to expand the crystal lattice to create a composition having excel 3,573,204 3/1971 Van Wyk ............................ .. 252/12 Thompson 252/12 lent lubricating characteristics the performance of 3,763,043 10/1973 which is not adversely effected by operation in a high 3,769,210 10/1973 Cais et a1. ........ .. 252/25 4,040,917 8/1977 Whittingham . .. 204/36 temperature environment. 4,094,893 6/ 1978 Dines ................................. -
Chalcogenide Glass Materials for Integrated Infrared Photonics
Chalcogenide Glass Materials for Integrated Infrared Photonics by Vivek Singh B.S. Materials Science and Engineering Columbia University, 2009 Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2015 © 2015 Massachusetts Institute of Technology. All rights reserved. Signature of Author:_________________________________________ Department of Materials Science and Engineering July 20, 2015 Certified by:_____________________________________________ Lionel C. Kimerling Thomas Lord Professor of Materials Science and Engineering Thesis Supervisor Certified by:_____________________________________________ Anuradha M. Agarwal Principal Research Scientist, Materials Processing Center Thesis Supervisor Accepted by:_____________________________________________ Donald Sadoway Chair, Departmental Committee on Graduate Students 2 Chalcogenide Glass Materials for Integrated Infrared Photonics by Vivek Singh Submitted to the Department of Materials Science and Engineering on July 20, 2015 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering Abstract Chalcogenide glasses (ChGs) are amorphous compounds containing the chalcogen elements (S, Se, Te) and exhibit wide infrared transparency windows. They are easy to synthesize in bulk and thin film forms and their compositional flexibility allows tuning of optical properties such as refractive index making them ideal for infrared photonics. We have studied the material attenuation in ChGs that arises due to the presence of impurities in the raw materials and established UV photolithography-based process flows that enable fabrication of chalcogenide glass waveguides and microresonators for near- and mid-IR wavelength ranges. Waveguides and optical resonators are key microphotonic elements for many on-chip applications such as telecommunications and chemical sensing. -
Synergy of Alum and Chlorine Dioxide for Curbing Disinfection Byproduct Formation Potential at Central Arkansas Water Corey W
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Synergy of Alum and Chlorine Dioxide for Curbing Disinfection Byproduct Formation Potential at Central Arkansas Water Corey W. Granderson University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Environmental Engineering Commons, and the Water Resource Management Commons Recommended Citation Granderson, Corey W., "Synergy of Alum and Chlorine Dioxide for Curbing Disinfection Byproduct Formation Potential at Central Arkansas Water" (2012). Theses and Dissertations. 310. http://scholarworks.uark.edu/etd/310 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. SYNERGY OF ALUM AND CHLORINE DIOXIDE FOR CURBING DISINFECTION BYPRODUCT FORMATION POTENTIAL AT CENTRAL ARKANSAS WATER SYNERGY OF ALUM AND CHLORINE DIOXIDE FOR CURBING DISINFECTION BYPRODUCT FORMATION POTENTIAL AT CENTRAL ARKANSAS WATER A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering By Corey W. Granderson University of Arkansas Bachelor of Science in Civil Engineering, 2008 May 2012 University of Arkansas Abstract Central Arkansas Water (CAW), the water utility for Little Rock, AR, draws their source water from Lake Maumelle and Lake Winona. To curb disinfection byproduct (DBP) formation, CAW has begun retrofitting their two plants to use chlorine dioxide as an alternative primary disinfectant followed by free chlorine secondary disinfection in the distribution system. In this study, fluorescence parallel factor (PARAFAC) analysis was combined with free chlorine simulated distribution system (SDS) tests and DBP formation potential (DBPFP) tests to study the benefit of chlorine dioxide primary disinfection (CDPD) with alum coagulation. -
Aluminum Discovered: H.C. Oersted in 1825 Name: from Alum, Used By
Aluminum Discovered: H.C. Oersted in 1825 Name: From alum, used by ancient Greeks and Romans as an astringent and as a mordant in dyeing. Sir Humphrey Davy proposed the name aluminum, but changed it to aluminium to have it conform to the spelling of other metals. This spelling was used in the U.S. until 1925 when the ACS when back to the original spelling. The rest of the world uses the “-ium” ending. Occurrence: It is the most common metallic element in the Earth's crust and occurs in many different forms in nature some of which are: bauxite, cryolite (Na3AlF6), micas, feldspars, vermiculite, diaspore (AlO2H), gibbsite (Al(OH)3), garnet (Ca3Al2(SiO4)3), beryl (Be3Al2Si6O18), turquoise (Al2(OH)3PO4H2O/Cu), corundum (-Al2O3), other Al2O3 with impurities are ruby (Cr(III)), topaz (Fe(III)), sapphire, and oriental emerald. Bauxite deposits are common. Large reserves are found in Australia, Africa, Brazil, Central America, Guinea, and Jamaica. Isolation: Bauxite (AlO2H•nH2O) is dissolved in molten NaOH (1200 ºC) and is precipitated with CO2, then dissolved in cryolite at 950 ºC and electrolyzed (Bayer process). Cost of 1 gram, 1 mole: $0.08, $2.20 Natural Isotopes: 27Al (100%) Physical and Relatively low melting point Chemical High electrical conductivity Properties: Soft Low density Silvery white in color Non-magnetic Corrosion resistant Highly malleable and ductile Reactions: 2 Al + 6 HCl 2 AlCl3 + 3 H2 2 Al(OH)3 Al2O3 + 3 H2O Uses: Alloys for building construction, transportation, containers and packaging, electrical power lines, cookware, etc. Al3.6Zr(OH)11.6Cl3.2•xH2O•glycine is the active ingredient in some antiperspirants Al2O3 is a major component of Portland cement Beryllium Discovered: By L.-N.