Reed Cavity Design and Resonance

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Note: In the original hardcopy publication, Equations 5 and 7 contained errors, which carried through to the Table of that publication. These errors, however, are not large enough to alter the main conclusions made in that publication. In this HTML publication, these errors have been corrected, and there are corresponding differences between the Table and Text here and the Table and Text of the original hardcopy publication. I wish to thank Johann Pascher for first pointing out these errors to me – Tom Tonon Reed Cavity Design and Resonance TOM TONON Background Resonance occurs in acoustic systems, and reed cavities in concertinas and other free-reed instruments are no exception. Investigations of reed cavity resonance have been carried out in Europe and in the United States.1 It is my intention here to focus on the practical details of reed cavity resonance, and I hope this article can assist towards a more thorough and broadly accessible discussion. I present here qualitative and quantitative aspects of resonant cavity design, including suggestions on how resonance can possibly enhance as well as detract from reed performance. The approach here incorporates simple acoustic models, and is based both on suggestions from the work of others and on the limited experiments I have done myself. At the end of this article I present tabulated examples of resonant cavity geometries calculated from these models, as applied to the musical range of the concertina family of instruments. Fundamentals An important function of the reed cavity is to provide secure and airtight mounting of the reed in order that a uniform stream of air can be directed through the reed and that tongue vibration can proceed without interference.2 Practical free-reed instruments cannot exist without cavities, and very few people have heard the sound of a free reed without an associated cavity. Builders are aware that cavity shape can influence reed performance, and is this feature of the cavity that concerns us here. The vibrating reed tongue and the air within and about the cavity are acoustically coupled together. In some designs, the effect of the cavity on the musical tone is small, or negligible; in other designs, the effect of the cavity can significantly modify the musical tone; and in still other designs, the acoustic effect of the cavity can prevent the reed from speaking properly. Coupled Vibrations Mechanical systems possessing mass and elasticity experience natural modes of vibration called resonance,3 and two or more systems can participate in coupled vibrations. The reed tongue is one such system, and the air within and about the cavity comprises another. The combined tongue/cavity system is coupled together by the air pressure/velocity behavior at and near the vent (slot) through which the tongue passes, since both the vibrating tongue and the vibrating air mass within and about the cavity influence this region. The tongue vibration occurs at a frequency very slightly lower than its natural frequency—vibrating as a bar with one end fixed and the other free—- inducing air and pressure oscillations about the vent, and thus causing air inside the cavity to vibrate.4 Because of the coupling mechanism, this influence can amplify or diminish the fundamental of the musical tone, and the precise nature of this influence depends in general upon the particular resonant mode of the cavity and the position of the vibrating tongue with respect to the cavity. The degree of any influence to be expected is difficult to determine without experiment, though there are at least two parameters that must be considered in this determination. One is the frequency match between the resonant mode of the cavity and the vibrational frequency of the tongue, and another is the size of the cavity, or, better stated, the power output of the mass of air that is induced to resonant vibration in comparison to the vibrational power output of the reed itself. Bigger cavities will have larger potential influence. As an illustration, consider a wider scope of reed instruments. With woodwinds— the clarinet, for instance—the body of the instrument takes on the role of the cavity, which is relatively very large, and the air mass in and about this geometry resonates as the primary source of vibrational energy, with the reed vibration itself contributing very little. The beating reed of the clarinet functions as a pressure-controlling device, is placed at a pressure antinode, and vibrates at a frequency equal to that of the cavity-mode vibration, which is well below the reed’s own natural frequency. Reed vibration and air vibration are strongly coupled, and air vibration dominates, with the soft, pliable reed simply tagging along. At the other extreme are the tone chambers (cassottos) placed in some accordions. Here, the reed/tongue system is weakly coupled to the air geometry associated with the tone chamber, and resonant vibrations of air in and about the tone chamber have little effect back on tongue vibration, which provides the predominant amount of acoustical power. Tone chamber vibrations, however, do significantly alter the sound of the musical tone (volume and timbre) for those reeds that present partials with frequencies that match the resonant frequencies of the tone chamber (a phenomenon discussed in more detail below).5 An intermediate example is the beating reed used in organ pipes,6 which is again a device closely coupled to air vibration and placed near a pressure antinode. Here, the tongue is not nearly as compliant as the beating reed in a woodwind instrument, but it is also not as stiff as that in free reeds, and the resonant frequency of the combined system is a compromise between the tongue and air column systems. A final example is the Asian free reed, which normally functions with a pipe resonator, to which it is closely coupled. This reed is placed near the closed end of the resonator (bawu,with the other end open), approximately a quarter length away from the closed end (khaen), or at the open end of an open pipe resonator (sheng). Such varied placement indicates that the coupling between this reed and its resonator is complicated. For the khaen and sheng, the resonator frequencies are closely matched and the playing frequency is typically slightly above the resonant frequencies of both the reed and the resonator. For the bawu, the playing frequency is near the pipe- resonant frequency, which is considerably above the resonant frequency of the reed.7 With the Western free-reed system, tongue and air vibration coupling is also strong, but a key feature of the mechanism for vibration here is different from those of both the beating reed and the Asian free reed. With the Western free reed, tongue vibration is self-excited and does not require a vibrating air mass (resonator) in order to transfer a steady air pressure difference into oscillatory motion. The mechanism for self-excitation takes place in the neighborhood of the vent and occurs at the frequency at which the tongue vibrates: that is, the fundamental of the musical tone. The tongue can thus be made to vibrate without any cavity, and it can be made to vibrate at frequencies far from any resonant frequency of the cavity. Far from cavity resonance, air vibration in the cavity is small and will thus have relatively little effect on air motion in the critical vent region. As tongue vibration frequency and cavity mode resonant frequency become closer, however, cavity air vibration can become large enough to influence the self-excitation mechanism. Whether this influence assists or interferes with tongue vibration and the resulting musical tone depends upon the resonant mode of the cavity and how the reed is mounted in relation to the cavity. In what follows, I apply the Helmholtz, quarter-wave, and full-wave models as a way to understand the resonant modes possible with the reed cavity and how they might influence reed performance. The interference described above can completely prevent the tongue from vibrating: the reed becomes choked. Choking is predicted, then, under certain conditions when tongue vibration frequency is in some neighborhood of cavity mode frequency. Builders occasionally encounter choking in the higher-pitched reeds, and later in this article, I provide calculations illustrating why such reeds are likely candidates for choking, based upon resonant effects. As a remedy, builders sometimes provide a ‘vent hole’ in the cavity, or file off a corner of the tongue, in order to allow the reed to sound properly. These gaps function by allowing air leakage, destroying the offending resonant mode of the cavity, and perhaps also by incorporating a larger degree of damping in the cavity mode vibration. Three other methods are sometimes used by builders to prevent choking: eliminate leather valves on both reeds mounted in the cavity, reduce cavity height to an absolute minimum, and mount the reed with the reed tip near the air opening to the cavity.8 The first of these provides the same function as the ‘vent hole’ described earlier, the second of these changes the resonant geometry, when the cavity is functioning as a Helmholtz resonator, and the third is useful when the cavity is functioning as a quarter-wave tube. I discuss these resonant geometries more fully in the following sections. An interesting experiment is to take a reed block out of an accordion and attempt to sound the reeds by blowing or sucking through the air passages while making a tight seal between your lips and the block opening. For many reeds, weak, or even no sound results, suggesting an offending resonant mode of the large cavity created by the addition of your pulmonary system to that of the reed block.
Recommended publications
  • The KNIGHT REVISION of HORNBOSTEL-SACHS: a New Look at Musical Instrument Classification

    The KNIGHT REVISION of HORNBOSTEL-SACHS: a New Look at Musical Instrument Classification

    The KNIGHT REVISION of HORNBOSTEL-SACHS: a new look at musical instrument classification by Roderic C. Knight, Professor of Ethnomusicology Oberlin College Conservatory of Music, © 2015, Rev. 2017 Introduction The year 2015 marks the beginning of the second century for Hornbostel-Sachs, the venerable classification system for musical instruments, created by Erich M. von Hornbostel and Curt Sachs as Systematik der Musikinstrumente in 1914. In addition to pursuing their own interest in the subject, the authors were answering a need for museum scientists and musicologists to accurately identify musical instruments that were being brought to museums from around the globe. As a guiding principle for their classification, they focused on the mechanism by which an instrument sets the air in motion. The idea was not new. The Indian sage Bharata, working nearly 2000 years earlier, in compiling the knowledge of his era on dance, drama and music in the treatise Natyashastra, (ca. 200 C.E.) grouped musical instruments into four great classes, or vadya, based on this very idea: sushira, instruments you blow into; tata, instruments with strings to set the air in motion; avanaddha, instruments with membranes (i.e. drums), and ghana, instruments, usually of metal, that you strike. (This itemization and Bharata’s further discussion of the instruments is in Chapter 28 of the Natyashastra, first translated into English in 1961 by Manomohan Ghosh (Calcutta: The Asiatic Society, v.2). The immediate predecessor of the Systematik was a catalog for a newly-acquired collection at the Royal Conservatory of Music in Brussels. The collection included a large number of instruments from India, and the curator, Victor-Charles Mahillon, familiar with the Indian four-part system, decided to apply it in preparing his catalog, published in 1880 (this is best documented by Nazir Jairazbhoy in Selected Reports in Ethnomusicology – see 1990 in the timeline below).
  • Weltmeister Akkordeon Manufaktur Gmbh the World's Oldest Accordion

    Weltmeister Akkordeon Manufaktur Gmbh the World's Oldest Accordion

    MADE IN GERMANY Weltmeister Akkordeon Manufaktur GmbH The world’s oldest accordion manufacturer | Since 1852 Our “Weltmeister” brand is famous among accordion enthusiasts the world over. At Weltmeister Akkordeon Manufaktur GmbH, we supply the music world with Weltmeister solo, button, piano and folklore accordions, as well as diatonic button accordions. Every day, our expert craftsmen and accordion makers create accordions designed to meet musicians’ needs. And the benchmark in all areas of our shop is, of course, quality. 160 years of instrument making at Weltmeister Akkordeon Manufaktur GmbH in Klingenthal, Germany, are rooted in sound craftsmanship, experience and knowledge, passed down carefully from master to apprentice. Each new generation that learns the trade of accordion making at Weltmeister helps ensure the longevity of the company’s incomparable expertise. History Klingenthal, a centre of music, is a small town in the Saxon Vogtland region, directly bordering on Bohemia. As early as the middle of the 17th century, instrument makers settled down here, starting with violin makers from Bohemia. Later, woodwinds and brasswinds were also made here. In the 19th century, mouth organ ma- king came to town and soon dominated the townscape with a multitude of workshops. By the year 1840 or thereabouts, this boom had turned Klingenthal into Germany’s largest centre for the manufacture of mouth organs. Production consolidation also had its benefits. More than 30 engineers and technicians worked to stre- Accordion production started in 1852, when Adolph amline the instrument making process and improve Herold brought the accordion along from Magdeburg. quality and customer service. A number of inventions At that time the accordion was a much simpler instru- also came about at that time, including the plastic key- ment, very similar to the mouth organ, and so it was board supported on two axes and the plastic and metal easily reproduced.
  • Electrophonic Musical Instruments

    Electrophonic Musical Instruments

    G10H CPC COOPERATIVE PATENT CLASSIFICATION G PHYSICS (NOTES omitted) INSTRUMENTS G10 MUSICAL INSTRUMENTS; ACOUSTICS (NOTES omitted) G10H ELECTROPHONIC MUSICAL INSTRUMENTS (electronic circuits in general H03) NOTE This subclass covers musical instruments in which individual notes are constituted as electric oscillations under the control of a performer and the oscillations are converted to sound-vibrations by a loud-speaker or equivalent instrument. WARNING In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. 1/00 Details of electrophonic musical instruments 1/053 . during execution only {(voice controlled (keyboards applicable also to other musical instruments G10H 5/005)} instruments G10B, G10C; arrangements for producing 1/0535 . {by switches incorporating a mechanical a reverberation or echo sound G10K 15/08) vibrator, the envelope of the mechanical 1/0008 . {Associated control or indicating means (teaching vibration being used as modulating signal} of music per se G09B 15/00)} 1/055 . by switches with variable impedance 1/0016 . {Means for indicating which keys, frets or strings elements are to be actuated, e.g. using lights or leds} 1/0551 . {using variable capacitors} 1/0025 . {Automatic or semi-automatic music 1/0553 . {using optical or light-responsive means} composition, e.g. producing random music, 1/0555 . {using magnetic or electromagnetic applying rules from music theory or modifying a means} musical piece (automatically producing a series of 1/0556 . {using piezo-electric means} tones G10H 1/26)} 1/0558 . {using variable resistors} 1/0033 . {Recording/reproducing or transmission of 1/057 . by envelope-forming circuits music for electrophonic musical instruments (of 1/0575 .
  • Thank You for Your Purchase! the ® Plaque and Gauge Set Can Be Used to Find Mouthpiece Facing Curve Lengths on Most Clarinet A

    Thank You for Your Purchase! the ® Plaque and Gauge Set Can Be Used to Find Mouthpiece Facing Curve Lengths on Most Clarinet A

    mouthpiece from the top (figure If the gauge is crooked (figure airplane wing (balancing of 2). The position at which the 4), then the reed is not sealing “C”), each wing needs to be ® gauge lightly comes to rest is well on the mouthpiece table identical for consistent air-flow MADE IN USA the spot on your mouthpiece and is warped. Your reed is and lift. When the reed is in Thank you for your purchase! where the mouthpiece curve also leaking at the beginning of balance with itself and the begins (figure 3). The marking the facing curve, hence, is mouthpiece facing curve, sound The ® Plaque and Gauge lines on the plaque are in one losing playing and vibrational resonates better and your set can be used to find millimeter increments. You efficiency. playing becomes very natural. mouthpiece facing curve lengths may take note of this facing To remedy, use your ® on most clarinet and saxophone curve length measurement or Tool to flatten the reed, as The ® Plaque may be mouthpieces, as well as mark the side of the transferring those facing needed. Figure 5 depicts a flat used as a traditional plaque to mouthpiece, lightly, with a reed that seals properly at the support a reed while you are measurements onto the reed. pencil or marker. mouthpiece facing. The making adjustments. Use the To find your mouthpiece’s Gauging reed flatness: horizontal line depicts the start top side, curved end marked facing curve length: Slip the gauge between the reed of the facing curve. This line is “tip work,” see picture.
  • Bishop Scott Boys' School

    Bishop Scott Boys' School

    BISHOP SCOTT BOYS’ SCHOOL (Affiliated to CBSE, New Delhi) Affiliation No.: 330726, School Campus: Chainpur, Jaganpura, By-Pass, Patna 804453. Phone Number: 7061717782, 9798903550. , Web: www.bishopscottboysschool.com Email: [email protected] STUDY COURSE MATERIAL ENGLISH SESSION-2020-21 CLASS- IX Ch 2- The Sound of Music. Part I - (Evelyn Glennie Listens to Sound without Hearing It) By Deborah Cowley Part I. Word meanings. 1. Profoundly deaf: absolutely deaf. 2. specialist: a doctor specializing in a particular part of the body. 3. Deteriorated: worsened, reduces. 4. Urged: requested. 5. coveted: much desired 6. replicating: making a copy of something 7. yearning – longing, having a desire for something 8. devout: believing strongly in a religion and obeying its laws and following its practices Summary. Evelyn Glennie is a multi – percussionist. She has attained mastery over almost a thousand musical instruments despite being hearing – impaired. She learnt to feel music through the body instead of hearing it through the ears. When Evelyn was eleven years old, it was discovered that she had lost her hearing power due to nerve damage. The specialist advised that she wear hearing aids and be sent to a school for the deaf. On the contrary, Evelyn was determined to lead a normal life and follow her interest in music. Although she was discouraged by her teachers, her potential was noticed by master percussionist, Ron Forbes. He guided Evelyn to feel music some other way than to hear it through her ears. This worked well for Evelyn and she realized that she could sense different sounds through different parts of her body.
  • Physical Study of Double-Reed Instruments for Application to Sound-Synthesis André Almeida, Christophe Vergez, René Causse, Xavier Rodet

    Physical Study of Double-Reed Instruments for Application to Sound-Synthesis André Almeida, Christophe Vergez, René Causse, Xavier Rodet

    Physical study of double-reed instruments for application to sound-synthesis André Almeida, Christophe Vergez, René Causse, Xavier Rodet To cite this version: André Almeida, Christophe Vergez, René Causse, Xavier Rodet. Physical study of double-reed instru- ments for application to sound-synthesis. International Symposium in Musical Acoustics, Dec 2002, Mexico, Mexico. pp.1-1. hal-01161426 HAL Id: hal-01161426 https://hal.archives-ouvertes.fr/hal-01161426 Submitted on 8 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Physical study of double-reed instruments for application to sound-synthesis Andre´ Almeida∗, Christophe Vergezy, Rene´ Causse´∗, Xavier Rodet∗ ∗IRCAM, Centre Pompidou/CNRS, 1 Place Igor Stravinsky, 75004 Paris, France yLMA, CNRS, 31 Chemin Joseph Aiguier, 13402 cedex 20 Marseille, France Physical models for most reed instruments have been studied for about 30 years and relatively simple models are enough to describe the main features of their behavior. These general models seem to be valid for all members of the family, yet the sound of a clarinet is distinguishable from the sound of a saxophone or an oboe. Though the conical bore of an oboe or a bassoon has a strong effect over the timbre difference, it doesn’t seem to be a sufficient explanation for the specific character of these double-reed instruments.
  • REED HARDNESS TIPS REED SELECTION TIPS TIPBOOK TIP 11: French & American Cuts Butt Vamp There Are Two Style of Reeds: French Cut and American Cut

    REED HARDNESS TIPS REED SELECTION TIPS TIPBOOK TIP 11: French & American Cuts Butt Vamp There Are Two Style of Reeds: French Cut and American Cut

    REED HARDNESS TIPS REED SELECTION TIPS TIPBOOK TIP 11: French & American Cuts butt vamp There are two style of reeds: French cut and American cut. French TIPBOOK TIP: 01 Hardness cut reeds, mainly used by classical saxophonists, have a thinner tip heart tip and are a bit thicker in the heart area. Reeds with an American cut The main difference from one reed to another is how soft or hard usually feature a slightly thicker tip and less heart, producing a they feel. Reeds are often classified with numbers, e.g., from 2 to table fuller, focused sound. 4 in half strengths. The higher the number, the harder or more resistant the reed plays. TIPBOOK TIP 12: French Filed Cut TIPBOOK TIP: 02 Names Instead of Numbers TIPBOOK TIP 06: Not Equally Hard Reeds with a file cut or “double cut” have an Some reeds are measured with words instead of numbers. The Because cane is a natural product, each piece of cane will vary extra strip of the bark removed in a straight line, hardness can be indicated as Soft (S), Medium soft, Medium (M), slightly in resistance despite being cut identically. As a result, ten just below the vamp area. This allows for extra Medium hard, or Hard (H). There are also some models like Rico’s reeds of the same strength from inside the same box will not be flexibility and a fast response. Select Jazz™ that let you fine tune the strength into smaller equally hard. A box of 2.5 reeds may contain some harder and increments such as 2 Soft, 2 Medium, or 2 Hard (2S, 2M, 2H, 3S, softer 2.5 reeds.
  • Instrument Descriptions

    Instrument Descriptions

    RENAISSANCE INSTRUMENTS Shawm and Bagpipes The shawm is a member of a double reed tradition traceable back to ancient Egypt and prominent in many cultures (the Turkish zurna, Chinese so- na, Javanese sruni, Hindu shehnai). In Europe it was combined with brass instruments to form the principal ensemble of the wind band in the 15th and 16th centuries and gave rise in the 1660’s to the Baroque oboe. The reed of the shawm is manipulated directly by the player’s lips, allowing an extended range. The concept of inserting a reed into an airtight bag above a simple pipe is an old one, used in ancient Sumeria and Greece, and found in almost every culture. The bag acts as a reservoir for air, allowing for continuous sound. Many civic and court wind bands of the 15th and early 16th centuries include listings for bagpipes, but later they became the provenance of peasants, used for dances and festivities. Dulcian The dulcian, or bajón, as it was known in Spain, was developed somewhere in the second quarter of the 16th century, an attempt to create a bass reed instrument with a wide range but without the length of a bass shawm. This was accomplished by drilling a bore that doubled back on itself in the same piece of wood, producing an instrument effectively twice as long as the piece of wood that housed it and resulting in a sweeter and softer sound with greater dynamic flexibility. The dulcian provided the bass for brass and reed ensembles throughout its existence. During the 17th century, it became an important solo and continuo instrument and was played into the early 18th century, alongside the jointed bassoon which eventually displaced it.
  • A Pedagogical Utilisation of the Accordion to Study the Vibration Behaviour of Free Reeds

    A Pedagogical Utilisation of the Accordion to Study the Vibration Behaviour of Free Reeds

    A PEDAGOGICAL UTILISATION OF THE ACCORDION TO STUDY THE VIBRATION BEHAVIOUR OF FREE REEDS PACS REFERENCE: 4310.Sv Llanos-Vázquez, R.1; Elejalde-García, M.J.1; Macho-Stadler, E.1; Alonso-Moral, J.2 1Dpto. Física Aplicada 1. Escuela Superior de Ingenieros. UPV/EHU. Address: Alameda de Urquijo s.n., 48013 Bilbao, Spain. Tel: 34-946014256. Fax: 34-946014178. E-mail: [email protected] 2Conservatorio Superior de Música Juan Crisóstomo de Arriaga Address: General Concha 20, 48010 Bilbao, Spain. Tel: 34-944412136. Fax: 34-946014178. E-mail: [email protected] ABSTRACT This paper is concerned primarily with an educational approach to the accordion sound generation mechanisms. Accordions are made to sound by buzzing a thin steel tongue, which is attached to one side of a metal plate containing an aperture through which the reed tongue can actually pass. The accordion utilises the free reed principle, is hand-held and is powered by bellows. The aim of this work is to present the pedagogical steps that focus on the knowledge of free reed behaviour and the pressure forces that excite the reed vibration. INTRODUCTION The term Accordion is the proper generic term for all members of a complex family of free-reed aerophones. The accordion consists of a series of air-actuated free reeds tuned to notes of a musical scale and controlled by means of a keyboard. The family is divided into two preliminary halves: “Diatonic” accordions, that play different pitches when bellows are expanded or compressed and “Chromatic” accordions, that sound the same pitch in both bellows directions.
  • The Source Spectrum of Double-Reed Wood-Wind Instruments

    The Source Spectrum of Double-Reed Wood-Wind Instruments

    Dept. for Speech, Music and Hearing Quarterly Progress and Status Report The source spectrum of double-reed wood-wind instruments Fransson, F. journal: STL-QPSR volume: 8 number: 1 year: 1967 pages: 025-027 http://www.speech.kth.se/qpsr MUSICAL ACOUSTICS A. THE SOURCE SPECTRUM OF DOUBLE-REED WOOD-VIIND INSTRUMENTS F. Fransson Part 2. The Oboe and the Cor Anglais A synthetic source spectrum for the bassoon was derived in part 1 of the present work (STL-GPSR 4/1966, pp. 35-37). A synthesis of the source spectrum for two other representative members of the double-reed family is now attempted. Two oboes of different bores and one cor anglais were used in this experiment. Oboe No. 1 of the old system without marking, manufactured in Germany, has 13 keys; Oboe No. 2, manufactured in France and marked Gabart, is of the modern system; and the Cor Anglais No. 3 is of the old system with 13 keys and made by Bolland & Wienz in Hannover. Measurements A mean spectrogram for tones within one octave covering a frequen- cy range from 294 to 588 c/s was produced for the oboes by playing two scrics of tones. One serie was d4, e4, f4, g4, and a and the other 4 serie was g 4, a4, b4, c 5' and d5. Both series were blown slurred ascending and descending in rapid succession, recorded and combined to a rather inharmonic duet on one loop. The spectrograms are shown in Fig. 111-A- 1 whcre No. 1 displays the spectrogram for the old sys- tem German oboe and No.
  • Woodwind Family

    Woodwind Family

    Woodwind Family What makes an instrument part of the Woodwind Family? • Woodwind instruments are instruments that make sound by blowing air over: • open hole • internal hole • single reeds • double reed • free reeds Some woodwind instruments that have open and internal holes: • Bansuri • Daegeum • Fife • Flute • Hun • Koudi • Native American Flute • Ocarina • Panpipes • Piccolo • Recorder • Xun Some woodwind instruments that have: single reeds free reeds • Clarinet • Hornpipe • Accordion • Octavin • Pibgorn • Harmonica • Saxophone • Zhaleika • Khene • Sho Some woodwind instruments that have double reeds: • Bagpipes • Bassoon • Contrabassoon • Crumhorn • English Horn • Oboe • Piri • Rhaita • Sarrusaphone • Shawm • Taepyeongso • Tromboon • Zurla Assignment: Watch: Mr. Gendreau’s woodwind lesson How a flute is made How bagpipes are made How a bassoon reed is made *Find materials in your house that you (with your parent’s/guardian’s permission) can use to make a woodwind (i.e. water bottle, straw and cup of water, piece of paper, etc). *Find some other materials that you (with your parent’s/guardian’s permission) you can make a different woodwind instrument. *What can you do to change the sound of each? *How does the length of the straw effect the sound it makes? *How does the amount of water effect the sound? When you’re done, click here for your “ticket out the door”. Some optional videos for fun: • Young woman plays music from “Mario” on the Sho • Young boy on saxophone • 9 year old girl plays the flute.
  • Reed Instruments About Reeds

    Reed Instruments About Reeds

    Reed Instruments About Reeds A reed is a thin elastic strip of cane fixed at one end and free at the other. It is set into vibration by moving air. Reeds are the sound generators in the instruments described below. Cane reeds are built as either double or single reeds. A double reed consists of two pieces of cane carved and bound into a hollow, round shape at one end and flattened out and shaved thin at the other. The two pieces are tied together to form an channel. The single reed is a piece of cane shaved at one end and fastened at the other to a mouthpiece. Single Reed Instruments Clarinet: A family of single reed instruments with mainly a cylindrical bore. They are made of grenadilla (African blackwood) or ebonite, plastic, and metal. Clarinets are transposing instruments* and come in different keys. The most common ones used in orchestras are the clarinet in A and the clarinet in Bb. When a part calls for a clarinet in A, the player may either double -i.e. play the clarinet in A, or play the clarinet in Bb and transpose* the part as he plays. During the time of Beethoven, the clarinet in C was also in use and players were expected to be able to play all three instruments when required. All clarinets are notated in the treble clef and have approximately the same written range: E below middle C to c´´´´ (C five ledger lines above the staff). Bass Clarinet: A member of the clarinet family made of wood, which sounds an octave lower than the Clarinet in Bb.