Automation Capabilities in the Nanorobotic Handling of Nanomaterials

Total Page:16

File Type:pdf, Size:1020Kb

Automation Capabilities in the Nanorobotic Handling of Nanomaterials Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften Department für Informatik Automation Capabilities in the Nanorobotic Handling of Nanomaterials This dissertation is submitted for the degree of Dissertation zur Erlangung des Grades eines Doktor der Ingenieurwissenschaften vorgelegt von Malte Bartenwerfer 30. November 2018 Zusammenfassung Die konventionelle Miniaturisierung von Elektronik, Sensoren und Mikrobauteilen stößt mittlerweile an inhärente technologische Grenzen. Nanoskalige Objekte hingegen bieten –verursacht durch quantenmechanische Effekte oder durch das enorme Oberflächen-Volumen- Verhältnis– einzigartige physikalische Eigenschaften, welche Nanomaterialien und Nanoob- jekte zu vielversprechenden Kandidaten für neue Sensoren, Aktoren, Logikeinheiten und Energiewandler macht. Nanomaterialien und Nanoobjekte dienen somit als ultrakleine Bausteine in größeren und komplexeren System. Eine reibungslose Integration dieser Bausteine ist eine universelle Voraussetzung für viele neuartige Anwendungen und Konzepte, welche Nanomaterialien einsetzten und ist somit unerlässlich für die Realisierung von neuen Bauteilen. Das volle Potenzial von Nanomateri- alien und -objekten kann allerdings nur ausgeschöpft werden, wenn diese als individuelle und funktionale Objekte in ein Bauteil integriert werden. Diese Art der Integration stellt jedoch große Herausforderungen an die Handhabungsmethoden solcher Objekte. Ein allgemeines Verständnis der auf der Nanoskala herrschenden Kräfte ist vorhanden. Ein direkter Transfer hin zu allgemein anwendbaren Handhabungsstrategien ist allerdings kaum möglich, da diese Kräfte kaum beherrschbar oder messbar sind. Einerseits existieren mehrere erfolgreiche Ansätze, welche nanoskalige Effekte nutzen, zur Handhabung und Ma- nipulation von Nanoobjekten mit dem Ziel einer reibungslosen Integration. Andererseits sind die meisten Ansätze nur für ein sehr spezielles Handhabungsscenario gut geeignet, da sie auf dieses spezifische Problem ausgerichtet sind und die spezifischen Umgebungsbedingungen benötigen. Darüber hinaus sind praktische Aspekte, wie z.B. die Wirtschaftlichkeit einer Integrationsmethode, von großer Bedeutung, um für industrielle Anwendungen brauchbar zu sein. Der Durchsatz und vor allem die Automatisierbarkeit einer Nanohandhabungsmethode sind daher ebenso entscheidend wie die Genauigkeit. Bislang wurden jedoch noch nicht alle dieser Aspekte der Nanohandhabung ausreichend untersucht. Aufgrund der Anforderungen an die Integration wird typischerweise das Rasterelektronen- mikroskop (REM) als Arbeitsumgebung verwendet, da es Geschwindigkeit und Genauigkeit der Bildakquise sinnvoll kombiniert. Allerdings ist der Einsatz des REMs auch mit störenden Nebenwirkungen verbunden, die durch Ladungseffekte auf der Nanoskala hervorgerufen werden. In dieser Arbeit werden zwei Hauptthemen behandelt, die sich mit den oben genannten Anforderungen und den Herausforderungen der Integration von nanoskaligen Bausteinen befassen: i) die Entwicklung anwendbarer Handhabungsstrategien und ii) die Entwicklung der Automatisierung für die Nanomontage. Zunächst werden nanorobotische Strategien zum Einsatz innerhalb des REMs entwickelt, um präzise Bewegungen, Handhabung und Montage von Objekten mit Abmessungen bis in den Nanometerbereich zu ermöglichen. Mechanische Mikrostrukurierung wird zur Entwicklung von Werkzeugen eingesetzt, welche präzise Manipulationen ermöglichen und die Integration von Nanoobjekten mit einer Positioniergenauigkeit im Nanometern Bereich und einer Ausrichtungsgenauigkeit von wenigen Grad ermöglichen. Mit dem Ziel, Automatisierbarkeit zu erreichen, werden Methoden entwickelt und be- wertet, welche das Potenzial des REMs nutzen, aber dessen störende Ladungseffekte als zusätzliche Informationsquellen nutzen, um den Status einer laufenden Bearbeitungssequenz zu messen. Die entwickelten Techniken werden durch die Integration von Nanodrähten in bereits existierende Elektrodenstrukturen und MEMS Komponenten demonstriert. Zum Anderen werden unter Einbeziehung der neuen Messmethoden weitere Automa- tisierungsstrategien entwickelt und somit eine vollständig automatisierte Montage ohne Benutzerinteraktion realisiert. Diese Automatisierung wird in einer vollautomatischen Nanomontagesequenz von mikroskaligen Bausteinen umfassend demonstriert. Zusammenfassend zeigen die Ergebnisse dieser Arbeit die Möglichkeiten der nanorobo- tischen Montage und dass deren Entwicklung neue Perspektiven für Nanomaterialien öffnen kann. Die Ergebnisse der entwickelten Automatisierung zeigen, dass Durchsatzzahlen von etwa einem Stück pro Minute erreichbar sind und demonstrieren weiterhin das Potenzial, welches durch Automatisierung besteht. iv Abstract The conventional downscaling of electronics, sensors and building blocks is facing inherent technological limits. Nanoscale objects, on the other hand, offer unique physical properties, caused by quantum-mechanical effects or by the enormous surface-to-volume-ratio that makes nanomaterials and nanoobjects promising candidates for new sensors, actuators, computing units and energy converters. Nanomaterials and nanoobjects in devices act as building blocks with ultra-small dimensions within a larger and more complex system. Hence, a smooth integration of these building blocks is a common requirement for many novel applications and concepts that use nanomaterials and is essential for the construction of real devices. The full potential of nanomaterials and -objects can be exploited only if they are fully integrated into devices as individual and functional objects. However, this kind of integration presents major challenges to the handling capabilities of such objects. A general understanding of the forces ruling on the nanoscale is existent, but the direct transfer to the development of handling strategies is lacking, since these forces are hardly controllable or measurable. Hence, on the one hand, there are several considerable approaches to handling and manipulating nanoobjects for a smooth integration, which take advantage of effects specific to the nanoscale. On the other hand, most approaches are well-suited forone particular handling scenario only, since they are developed focusing on this specific problem and need the specific environment. Furthermore, practicality aspects, such as the economy of an integration method, are of major importance in order to be applicable to industry- relevant applications. Hence, the throughput and especially the automation capabilities of a nanohandling method are as crucially important as accuracy. So far, nanohandling strategies which sufficiently include all aspects have not been developed. Due to these demands on the integration, the scanning electron microscope (SEM) is typically used as a working environment, since it reasonably combines image acquisition speed and accuracy. However, the SEM is also associated with disruptive side-effects caused by the charging effect on the nanoscale. In this thesis, two major topics are addressed, tackling the demands mentioned above and the challenges of the integration of nanoscale building blocks: i) the development of applicable handling strategies and ii) the development of automation for nanoassembly. Firstly, nanorobotic strategies inside the SEM have been developed in order to provide precise movements, handling, and assembly of objects with dimensions as small as the nanometer scale. The structural design on the nanoscale is used for handling tools that enable precise manipulations and allow the integration of nanoobjects with a positioning accuracy of few nanometers and an alignment accuracy of few degrees. Aiming to achieve automation capabilities, methods are proposed and evaluated that use the potential of the SEM but exploit its disruptive charging effects as useful sources of information on the status of an ongoing handling sequence. The developed techniques are demonstrated in the integration of nanowires into pre-existing electrode structures and micro-electromechanical system (MEMS) devices. Secondly, automation strategies have been developed incorporating the new informa- tion sources in order to gather sufficient information for an automated assembly without user interaction. This automation has been extensively demonstrated in a fully automated nanoassembly sequence of microscale building blocks. In summary, the results of the thesis demonstrate the abilities of nanorobotic assembly and show that their developments open new perspectives for nanomaterials. The achieved automation reveals that throughput figures of about one piece per minute are achievable and demonstrates the potential and improvements achievable through automation. vi Table of contents List of figures xi List of tables xv List of acronyms xvii 1 Introduction 1 1.1 The Micro-/nanoscale . 4 1.1.1 What is the Micro-/nanoscale? . 4 1.1.2 Benefits of the Micro-/nanoscale . .5 1.1.3 Challenges and Opportunities . 6 1.1.4 Working the Micro-/nanoscale . 10 1.2 Objectives . 12 1.3 Outline and Author’s Contribution . 13 2 State of the Art 15 2.1 Scanning Electron Microscopy . 15 2.2 Handling on the Micro-/nanoscale . 19 2.2.1 Microhandling Stations . 22 2.2.2 Nanohandling Stations . 23 2.3 Automation on the Micro-/nanoscale . 25 2.3.1 Software Frameworks for Nanohandling and Automation . 25 2.4 Automated Nanohandling . 27 2.4.1 Case Study Related . 29 2.5 Conclusion . 31 3 Fundamentals and Tools in Nanorobotic Handling 33 3.1 Fundamental Forces on the Small Scale . 33 3.2 Conditions for Automation on the Micro-
Recommended publications
  • Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control Applied to Nanomedicine
    IEEE Transactions on Nanotechnology, Vol. 2, no. 2, June 2003 82 Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control applied to Nanomedicine Adriano Cavalcanti, Member, IEEE Germany only the Federal Ministry of Education and Research Abstract—The author presents a new approach within has announced 50 million Euros to be invested in the years advanced graphics simulations for the problem of nano-assembly 2002-2006 in research and development on nanotechnology automation and its application for medicine. The problem under [21]. More specifically the firm DisplaySearch predicts rapid study concentrates its main focus on nanorobot control design for assembly manipulation and the use of evolutionary competitive market growth from US$ 84 million today to $ 1.6 Billion in agents as a suitable way to warranty the robustness on the 2007 [20]. A first series of commercially nanoproducts has proposed model. Thereby the presented paper summarizes as well been announced also as foreseeable for 2007, and to reach this distinct aspects of some techniques required to achieve a goal of build organic electronics, firms are forming successful nano-planning system design and its simulation collaborations and alliances that bring together new visualization in real time. nanoproducts through the joint effort from companies such as IBM, Motorola, Philips Electronics, PARC, Xerox, Hewlett Index Terms—Biomedical computing, control systems, genetic algorithms, mobile robots, nanotechnology, virtual reality. Packard, Dow Chemical, Bell Laboratories, Intel Corp., just to quote a few ones [13], [20]. Building patterns and manipulating atoms with the use of I.INTRODUCTION Scanning Probe Microscope (SPM) such as Atomic Force he presented paper describe the design and simulation of Microscopy and Scanning Tunneling Microscopy has been Ta mobile nanorobot in atomic scales to perform used with satisfactory success as a promising approach for the biomolecular assembly manipulation for nanomedicine [12].
    [Show full text]
  • Artificial Intelligence, Automation, and Work
    Artificial Intelligence, Automation, and Work The Economics of Artifi cial Intelligence National Bureau of Economic Research Conference Report The Economics of Artifi cial Intelligence: An Agenda Edited by Ajay Agrawal, Joshua Gans, and Avi Goldfarb The University of Chicago Press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2019 by the National Bureau of Economic Research, Inc. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations in critical articles and reviews. For more information, contact the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637. Published 2019 Printed in the United States of America 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 ISBN-13: 978-0-226-61333-8 (cloth) ISBN-13: 978-0-226-61347-5 (e-book) DOI: https:// doi .org / 10 .7208 / chicago / 9780226613475 .001 .0001 Library of Congress Cataloging-in-Publication Data Names: Agrawal, Ajay, editor. | Gans, Joshua, 1968– editor. | Goldfarb, Avi, editor. Title: The economics of artifi cial intelligence : an agenda / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, editors. Other titles: National Bureau of Economic Research conference report. Description: Chicago ; London : The University of Chicago Press, 2019. | Series: National Bureau of Economic Research conference report | Includes bibliographical references and index. Identifi ers: LCCN 2018037552 | ISBN 9780226613338 (cloth : alk. paper) | ISBN 9780226613475 (ebook) Subjects: LCSH: Artifi cial intelligence—Economic aspects. Classifi cation: LCC TA347.A78 E365 2019 | DDC 338.4/ 70063—dc23 LC record available at https:// lccn .loc .gov / 2018037552 ♾ This paper meets the requirements of ANSI/ NISO Z39.48-1992 (Permanence of Paper).
    [Show full text]
  • Detecting Automation of Twitter Accounts: Are You a Human, Bot, Or Cyborg?
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. X, XXXXXXX 2012 1 Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? Zi Chu, Steven Gianvecchio, Haining Wang, Senior Member, IEEE, and Sushil Jajodia, Senior Member, IEEE Abstract—Twitter is a new web application playing dual roles of online social networking and microblogging. Users communicate with each other by publishing text-based posts. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots, which appear to be a double-edged sword to Twitter. Legitimate bots generate a large amount of benign tweets delivering news and updating feeds, while malicious bots spread spam or malicious contents. More interestingly, in the middle between human and bot, there has emerged cyborg referred to either bot-assisted human or human-assisted bot. To assist human users in identifying who they are interacting with, this paper focuses on the classification of human, bot, and cyborg accounts on Twitter. We first conduct a set of large-scale measurements with a collection of over 500,000 accounts. We observe the difference among human, bot, and cyborg in terms of tweeting behavior, tweet content, and account properties. Based on the measurement results, we propose a classification system that includes the following four parts: 1) an entropy-based component, 2) a spam detection component, 3) an account properties component, and 4) a decision maker. It uses the combination of features extracted from an unknown user to determine the likelihood of being a human, bot, or cyborg. Our experimental evaluation demonstrates the efficacy of the proposed classification system.
    [Show full text]
  • 2011 Annual Report MESSAGE from AUVSI PRESIDENT & CEO, MICHAEL TOSCANO
    2011 ANNUAL REPORT MESSAGE FROM AUVSI PRESIDENT & CEO, MICHAEL TOSCANO AUVSI and the unmanned systems community as a whole had another strong year in 2011 — capabilities increased across the board, as did interest in what unmanned systems can deliver. AUVSI is only as strong as its members, and our membership continued its upward climb throughout the year. There was also greater activity by local AUVSI chapters; we added several new chapters and many existing ones conducted successful events in 2011 that will help promote and field unmanned systems. Belonging to a chapter is an excellent way to get involved with unmanned systems at the local community level. We enjoyed record-breaking attendance at AUVSI’s Unmanned Systems Program Review 2011 and AUVSI’s Unmanned Systems North America 2011 and look forward to continued growth this year. We also stepped up our advo- cacy efforts, including hosting another successful AUVSI Day on Capitol Hill and forging more partnerships with other groups that have a stake in unmanned systems. Unmanned systems were frequently in the news during the year, and we helped put them there by hosting a National Press Club event in Washington to highlight the varied uses of unmanned systems and robotics. Unmanned systems helped monitor and clean up the Fukushima Dai-ichi nuclear plant in Japan in the wake of the devastating earthquake and tsunami. They also assisted in the attack on Osama bin Laden, performed unexploded ordnance range clearance at Camp Guernsey, provided assisting technology to the National Federation of the Blind’s Blind Driver Challenge and supported state and local law enforcement, among many other uses.
    [Show full text]
  • Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm
    © <2019>. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc- nd/4.0/ Accepted Manuscript Make robots Be Bats: Specializing robotic swarms to the Bat algorithm Patricia Suárez, Andrés Iglesias, Akemi Gálvez PII: S2210-6502(17)30633-8 DOI: 10.1016/j.swevo.2018.01.005 Reference: SWEVO 346 To appear in: Swarm and Evolutionary Computation BASE DATA Received Date: 24 July 2017 Revised Date: 20 November 2017 Accepted Date: 9 January 2018 Please cite this article as: P. Suárez, André. Iglesias, A. Gálvez, Make robots Be Bats: Specializing robotic swarms to the Bat algorithm, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/j.swevo.2018.01.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm Patricia Su´arez1, Andr´esIglesias1;2;:, Akemi G´alvez1;2 1Department of Applied Mathematics and Computational Sciences E.T.S.I. Caminos, Canales y Puertos, University of Cantabria Avda. de los Castros, s/n, 39005, Santander, SPAIN 2Department of Information Science, Faculty of Sciences Toho University, 2-2-1 Miyama 274-8510, Funabashi, JAPAN :Corresponding author: [email protected] http://personales.unican.es/iglesias Abstract Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by Prof.
    [Show full text]
  • Design and Implementation of Home Automation System
    DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI A Project Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfilment of the Requirements for the Degree Master of Science in Computer Science By Irwin Soni 2018 SIGNATURE PAGE PROJECT: DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI AUTHOR: Irwin Soni DATE SUBMITTED: Spring 2018 Computer Science Department Dr. Yu Sun Project Committee Chair Computer Science Dr. Sampath Jayarathna Computer Science ii ACKNOWLEDGEMENT First and foremost, I would like to thank God for blessing me with such amazing people who have been there to support me in all that I have achieved. To my parents, who have filled my life with immense love, happiness and shaping me into the person I have become today. I would like to thank Dr. Yu Sun, my project advisor, for his selfless support and enlightening guidance. Working with Dr. Sun was such a valuable experience of learning computer science and life at the same time. I would also like to thank Dr. Sampath Jayarathna for his review, suggestions and encouragement. I would also like to thank my classmates for their companionship and friendship. iii ABSTRACT Home automation system achieved great popularity in the last decades as it increases the comfort and quality of life. Smartphone applications are used to control and monitor the home appliances using different types of communication techniques. As mobile devices continue to grow in popularity and functionality, the demand for advanced ubiquitous mobile applications in our daily lives also increases. The paper deals with the design and implementation of a flexible and low-cost Home Automation System for various mobile devices that leverages mobile technology to provide essential functionalities to our homes and associated control operations.
    [Show full text]
  • Robots, Automation, and Employment: Where We Are
    WORKING PAPER SERIES ROBOTS, AUTOMATION, AND EMPLOYMENT: WHERE WE ARE Lukas Wolters PhD Candidate MIT Political Science [email protected] MIT Work of the Future Working Paper 05-2020 Date: May 26, 2020 400 Main Street, E19-733, Cambridge, MA 02139 Robots, Automation, and Employment: Where We Are∗ Lukas Woltersy May 26, 2020 Introduction “Robots will destroy our jobs – and we’re not ready for it” titled The Guardian in early 2017.1 Headlines like this have become more and more common over the past couple of years, with newspapers and media outlets reporting that “the robots are coming! And they are going to take all our jobs,“2 asserting that “sometime in the next 40 years, robots are going to take your job,”3 and that “robots may steal as many as 800 million jobs in the next 13 years,”4 and proclaiming gloomy headlines such as “automation threatening 25% of jobs in the US,”5 and “robots to replace up to 20 million factory jobs by 2030.”6 While idea that technology can render human labor obsolete is not new, and concerns about technological unemployment go back at least to Keynes (1930; p. 3) who in 1930 wrote about potential unemployment “due to our discovery of means of economizing the use of labor outrunning the pace at which we can find new uses for labor,” the recent proliferation of reports warning about the potential effect of new technologies, particularly advances in machine learning and robotics, on employment stands out in terms of the number of jobs allegedly under threat of replacement by machines and obsolescence.
    [Show full text]
  • Radio Frequency Identification Based Smart
    ISSN (Online) 2394-6849 International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE) Vol 4, Issue 6, June 2017 Nanorobots – Th Future of Medicine [1] Mokshith.B.R, [2]Tripti Kulkarni [1] [2] Dept of ECE, DSATM , Associate Professor, Dept of ECE,DSATM Abstract: Nanoscale devices are able to perform better with reduced time researches in nanotechnology brought newer approaches in the field of medicine. This context focuses on the components of the nanorobots and the employment of nanorobots for removing the heart blocks, cancer treatment and many more health care applications in more effective and accurate manner. Current diagnostic measures include painful processes like the angiogram. The treatment for the block is also extremely dangerous, time consumin g and painful. Angioplasty, although having the higher success rate, is old fashioned. Today’s technology promises a lot more than the insertion of a thin tube into the blood vessels. This context focuses the brief study on nanorobots and its benefits, the current process of diagnostics and therapy. Later t he idea of curing these heart blocks, cancer tumours and brain aneurysm using nanorobots is discussed in a theoretical and imaginative a pproach. I. INTRODUCTION II. NANOROBOTS AND KEY COMPONENTS Nanorobotics is an emerging technology field Nanorobots are of special interest to researchers in the medical creating machines or robots which components are at or near industry. This has given rise to the field of nanomedicine. It the scale of a nanometre (10−9 meters). More specifically, has been suggested that a fleet of nanorobots might serve as nanorobotics (as opposed to microbotics) refers to the antibodies or antiviral agents in patients with compromised nanotechnology engineering discipline of designing and immune systems, or in diseases that do not respond to more building nanorobots, with devices ranging in size from 0.1-10 conventional measures.
    [Show full text]
  • History of Robotics: Timeline
    History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios.
    [Show full text]
  • Swarm Robotics”
    applied sciences Editorial Editorial: Special Issue “Swarm Robotics” Giandomenico Spezzano Institute for High Performance Computing and Networking (ICAR), National Research Council of Italy (CNR), Via Pietro Bucci, 8-9C, 87036 Rende (CS), Italy; [email protected] Received: 1 April 2019; Accepted: 2 April 2019; Published: 9 April 2019 Swarm robotics is the study of how to coordinate large groups of relatively simple robots through the use of local rules so that a desired collective behavior emerges from their interaction. The group behavior emerging in the swarms takes its inspiration from societies of insects that can perform tasks that are beyond the capabilities of the individuals. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics [1], which shows a great potential in several aspects. The activities of social insects are often based on a self-organizing process that relies on the combination of the following four basic rules: Positive feedback, negative feedback, randomness, and multiple interactions [2,3]. Collectively working robot teams can solve a problem more efficiently than a single robot while also providing robustness and flexibility to the group. The swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. In the model, the robots in the swarm should have some basic functions, such as sensing, communicating, motioning, and satisfy the following properties: 1. Autonomy—individuals that create the swarm-robotic system are autonomous robots. They are independent and can interact with each other and the environment. 2. Large number—they are in large number so they can cooperate with each other.
    [Show full text]
  • Home Automation Planning Guide for Individuals with Autism
    HOME AUTOMATION PLANNING GUIDE FOR INDIVIDUALS WITH AUTISM WRITTEN BY A.J. PARON-WILDES WHY HOME AUTOMATION? When caring for an individual with autism, many needs must be addressed, and even the best caregiver can miss something or not see an incident coming. Home automation can offer protective solutions that support and elevate human care. The most important thing to remember when designing for individuals with autism is that they do not experience the designed environment in the same way others do. They can have increased sensitivities that evoke strong reactions to environmental stimuli. Color, lighting, sounds, and smells all can trigger extreme responses. Having an understanding that many people with autism have either hypo or hyper sensory issues will help you design an environment that can foster increased independence and confidence. Below I outline four main areas of consideration when starting a new design project or retrofitting a home to aid a person with autism. SAFETY The number-one priority for families with an autistic child is safety. Many of us do not understand the inherit dangers of our built environment and the impact it can have on those with autism. Daily challenges can range from possible elopement—kids walking out the front door—to an inadequate understanding of systems and appliances—how does the stove turn on and off? Then, as children get older, safety concerns shift. Instead of preventing the child from leaving the house, you monitor if and when they get in: Did they get off the bus and make it in the house independently? Can you see if a stranger is at the front door? Many children with autism have a hard time with speech, or have no speech, so communicating on the phone is not effective.
    [Show full text]
  • Industrial Robot
    1 Introduction 25 1.2 Industrial robots - definition and classification 1.2.1 Definition (ISO 8373:2012) and delimitation The annual surveys carried out by IFR focus on the collection of yearly statistics on the production, imports, exports and domestic installations/shipments of industrial robots (at least three or more axes) as described in the ISO definition given below. Figures 1.1 shows examples of robot types which are covered by this definition and hence included in the surveys. A robot which has its own control system and is not controlled by the machine should be included in the statistics, although it may be dedicated for a special machine. Other dedicated industrial robots should not be included in the statistics. If countries declare that they included dedicated industrial robots, or are suspected of doing so, this will be clearly indicated in the statistical tables. It will imply that data for those countries is not directly comparable with those of countries that strictly adhere to the definition of multipurpose industrial robots. Wafer handlers have their own control system and should be included in the statistics of industrial robots. Wafers handlers can be articulated, cartesian, cylindrical or SCARA robots. Irrespective from the type of robots they are reported in the application “cleanroom for semiconductors”. Flat panel handlers also should be included. Mainly they are articulated robots. Irrespective from the type of robots they are reported in the application “cleanroom for FPD”. Examples of dedicated industrial robots that should not be included in the international survey are: Equipment dedicated for loading/unloading of machine tools (see figure 1.3).
    [Show full text]