Sex Determination in Reptiles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 71 (2014) 149–156 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multi-locus molecular phylogeny for Australia’s iconic Jacky Dragon (Agamidae: Amphibolurus muricatus): Phylogeographic structure along the Great Dividing Range of south-eastern Australia ⇑ Mitzy Pepper a, , Marco D. Barquero b, Martin J. Whiting b, J. Scott Keogh a a Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia b Department of Biological Sciences, Macquarie University, Sydney, Australia article info abstract Article history: Jacky dragons (Amphibolurus muricatus) are ubiquitous in south-eastern Australia and were one of the Received 25 June 2013 -
Zootoca Vivipara) in Central Europe: Reproductive Strategies and Natural Hybridization
SALAMANDRA 46(2) 73–82 Oviparous20 May and 2010 viviparousISSN Zootoca 0036–3375 vivipara in central Europe Identification of a contact zone between oviparous and viviparous common lizards (Zootoca vivipara) in central Europe: reproductive strategies and natural hybridization Dorothea Lindtke1,3 Werner Mayer2 & Wolfgang Böhme3 1) Ecology & Evolution, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland 2) Molecular Systematics, 1st Zoological Department, Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria 3) Herpetology, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany Corresponding author: Dorothea Lindtke, e-mail: [email protected] Manuscript received: 24 September 2009 Abstract. The European common lizard, Zootoca vivipara, is one of the very few reptile species with two reproductive modes, viz. viviparity and oviparity. Oviparity in this otherwise viviparous form has been known since 1927 for the allopat- ric Z. v. louislantzi. Only with the discovery of a second oviparous form, Z. v. carniolica, a parapatric occurrence of ovipa- rous and viviparous populations became conceivable. In this study, we (1) detect a contact zone where both forms meet, (2) find evidence for natural hybridization between both reproductive strains, and (3) compare the reproductive strategies of egg-layers and live-bearers independent from environmental interference. Thirty-seven gravid females were captured in a supposed contact zone in Carinthia, Austria, and maintained in the laboratory until oviposition or parturition. Clutch size, embryonic mortality and birth weight of the neonates were compared among the reproductively differentiated samples. Hybrids were identified by intermediate reproductive characteristics. Our results provide the first proof of a contact zone between live-bearing and egg-laying Z. -
Reproductive Ecology of the Mountain Dragon, Rankin/A (Tympanocryptis) Diemensis (Reptilia: Squamata: Agamidae) in Tasmania
Papers and Proceedings ofthe Royal Society of Tasmania, Volume 139, 2005 23 REPRODUCTIVE ECOLOGY OF THE MOUNTAIN DRAGON, RANKIN/A (TYMPANOCRYPTIS) DIEMENSIS (REPTILIA: SQUAMATA: AGAMIDAE) IN TASMANIA by Jemina Stuart-Smith, Roy Swain and Andrew Welling (with three tables and two text-figures) Stuart-Smith, J., Swain, R. & Welling, A. 2005 (16:xii): Reproductive ecology of the Mountain Dragon, Rankinia (Tympanocryptis) diemensis (Reptilia: Squamata: Agamidae) in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 139: 23-28. https://doi.org/10.26749/rstpp.139.23 ISSN 0080-4703. School of Zoology, University of Tasmania, Private Bag 5, Tasmania, 7001 Australia.(J.S-S.*, R.S., AW). *Author for correspondence. The mountain dragon, Rankinia (Tympanocryptis) diemensis (Gray, 1841), is the only member of the Agamidae in Tasmania. It occurs in some of the coldest regions occupied by any dragon in Australia, and is found in a variety of habitats ranging from coastal heath to alpine scrub. This paper examines the reproductive ecology of R. diemensis in the most southerly range of its distribution, providing baseline data on timing of reproductive events, reproductive cycles, nesting behaviour and ovipositioning, clutch characteristics and incubation conditions. Winter torpor lasts approximately seven months with males emerging in early September and spermatogenesis occurring from September-November. Females emerge later, with vitcllogenesis occurring from September-December. Gravid females may be found between October and January, but females are non-vitcllogenic from late December until the following season. The firstclutch is typically laid from October-December, with a variable clutch size (2-11 eggs). Females store sperm and a second clutch may be laid fiveweeks after the first. -
Testing the Relevance of Binary, Mosaic and Continuous Landscape Conceptualisations to Reptiles in Regenerating Dryland Landscapes
Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes Melissa J. Bruton1, Martine Maron1,2, Noam Levin1,3, Clive A. McAlpine1,2 1The University of Queensland, Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental Management, St Lucia, Australia 4067 2The University of Queensland, ARC Centre of Excellence for Environmental Decisions, St. Lucia, Australia 4067 3Hebrew University of Jerusalem, Department of Geography, Mt. Scopus, Jerusalem, Israel, 91905 Corresponding author: [email protected] Ph: (+61) 409 875 780 The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-015-0157-9 Abstract: Context: Fauna distributions are assessed using discrete (binary and mosaic) or continuous conceptualisations of the landscape. The value of the information derived from these analyses depends on the relevance of the landscape representation (or model) used to the landscape and fauna of interest. Discrete representations dominate analyses of landscape context in disturbed and regenerating landscapes; however within-patch variation suggests that continuous representations may help explain the distribution of fauna in such landscapes. Objectives: We tested the relevance of binary, mosaic, and continuous conceptualisations of landscape context to reptiles in regenerating dryland landscapes. Methods: For each of thirteen reptile groups, we compared the fit of models consisting of one landscape composition and one landscape heterogeneity variable for each of six landscape representations (2 x binary, 2 x mosaic, and 2 x continuous), at three buffer distances. We used Akaike weights to assess the relative support for each model. Maps were created from Landsat satellite images. -
Reptile Rap Newsletter of the South Asian Reptile Network ISSN 2230-7079 No.15 | January 2013 Date of Publication: 22 January 2013 1
Reptile Rap Newsletter of the South Asian Reptile Network No.15 | January 2013 ISSN 2230-7079 Date of publication: 22 January 2013 1. Crocodile, 1. 2. Crocodile, Caiman, 3. Gharial, 4.Common Chameleon, 5. Chameleon, 9. Chameleon, Flap-necked 8. Chameleon Flying 7. Gecko, Dragon, Ptychozoon Chamaeleo sp. Fischer’s 10 dilepsis, 6. &11. Jackson’s Frill-necked 21. Stump-tailed Skink, 20. Gila Monster, Lizard, Green Iguana, 19. European Iguana, 18. Rhinoceros Antillean Basilisk, Iguana, 17. Lesser 16. Green 15. Common Lizard, 14. Horned Devil, Thorny 13. 12. Uromastyx, Lizard, 34. Eastern Tortoise, 33. 32. Rattlesnake Indian Star cerastes, 22. 31. Boa,Cerastes 23. Python, 25. 24. 30. viper, Ahaetulla Grass Rhinoceros nasuta Snake, 29. 26. 27. Asp, Indian Naja Snake, 28. Cobra, haje, Grater African 46. Ceratophrys, Bombina,45. 44. Toad, 43. Bullfrog, 42. Frog, Common 41. Turtle, Sea Loggerhead 40. Trionychidae, 39. mata Mata 38. Turtle, Snake-necked Argentine 37. Emydidae, 36. Tortoise, Galapagos 35. Turtle, Box 48. Marbled Newt Newt, Crested 47. Great Salamander, Fire Reptiles, illustration by Adolphe Millot. Source: Nouveau Larousse Illustré, edited by Claude Augé, published in Paris by Librarie Larousse 1897-1904, this illustration from vol. 7 p. 263 7 p. vol. from 1897-1904, this illustration Larousse Librarie by published in Paris Augé, Claude by edited Illustré, Larousse Nouveau Source: Millot. Adolphe by illustration Reptiles, www.zoosprint.org/Newsletters/ReptileRap.htm OPEN ACCESS | FREE DOWNLOAD REPTILE RAP #15, January 2013 Contents A new record of the Cochin Forest Cane Turtle Vijayachelys silvatica (Henderson, 1912) from Shendurney Wildlife Sanctuary, Kerala, India Arun Kanagavel, 3–6pp New Record of Elliot’s Shieldtail (Gray, 1858) in Seshachalam Biosphere Reserve, Eastern Ghats, Andhra Pradesh, India M. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Sexual Size Dimorphism and Feeding Ecology of Eutropis Multifasciata (Reptilia: Squamata: Scincidae) in the Central Highlands of Vietnam
Herpetological Conservation and Biology 9(2):322−333. Submitted: 8 March 2014; Accepted: 2 May 2014; Published: 12 October 2014. SEXUAL SIZE DIMORPHISM AND FEEDING ECOLOGY OF EUTROPIS MULTIFASCIATA (REPTILIA: SQUAMATA: SCINCIDAE) IN THE CENTRAL HIGHLANDS OF VIETNAM 1, 5 2 3 4 CHUNG D. NGO , BINH V. NGO , PHONG B. TRUONG , AND LOI D. DUONG 1Faculty of Biology, College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam, 2Department of Life Sciences, National Cheng Kung University, Tainan, Tainan 70101, Taiwan, e-mail: [email protected] 3Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 55000, Vietnam 4College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam 5Corresponding author, e-mail:[email protected] Abstract.—Little is known about many aspects of the ecology of the Common Sun Skink, Eutropis multifasciata (Kuhl, 1820), a terrestrial viviparous lizard found in the Central Highlands of Vietnam. We measured males and females to determine whether this species exhibits sexual size dimorphism and whether there was a correlation between feeding ecology and body size. We also examined spatiotemporal and sexual variations in dietary composition and prey diversity index. We used these data to examine whether the foraging pattern of these skinks corresponded to the pattern of a sit-and-wait predator or a widely foraging predator. The average snout-vent length (SVL) was significantly larger in adult males than in adult females. When SVL was taken into account as a covariate, head length and width and mouth width were larger in adult males than in adult females. -
First Report of Zootoca Vivipara (Lichtenstein, 1823) in Greece
Herpetology Notes, volume 12: 53-56 (2019) (published online on 10 January 2019) No one ever noticed: First report of Zootoca vivipara (Lichtenstein, 1823) in Greece Ilias Strachinis1,*, Korina M. Karagianni1, Martin Stanchev2, and Nikola Stanchev3 The Viviparous Lizard, Zootoca vivipara (Lichtenstein, declined and in some cases almost gone extinct (e.g. 1823), is a relatively small, ground-dwelling lizard lowland populations in Italy; Agasyan et al., 2010). The belonging to the family Lacertidae. It is the terrestrial current population trend is decreasing and the major reptile with the largest range in the world, extending threat that can occur locally is habitat loss resulting from Ireland in the west, to Japan (Hokkaido Islands) in from agricultural intensification, urbanization and the east, and from Bulgaria in the south to the Barents tourism facilities development (Agasyan et al., 2010). Sea in the north (Kupriyanova et al., 2017; Horreo et The species is protected under the Bern Convention al., 2018). As a highly cold-adapted species (Recknagel (Annex II) and listed on Annex IV of the European et al., 2018) the Viviparous Lizard can be found up to Union Habitat and Species Directive (Agasyan et al., 350km north of the Arctic Circle (Arnold and Ovenden, 2010). 2002) and up to 2900 m a.s.l. (Agasyan et al., 2010). It In the Balkans the species’ distribution appears occurs in a variety of habitats with rich vegetation and scattered (Fig. 1A) as the suitable habitats are mostly adequate humidity, however, in the south margin of its limited in higher altitudes, isolated by lowlands and river range it is restricted to high elevation open landscapes, valleys (Crnobrnja-Isailovic et al., 2015). -
Scincella Lateralis)
Herpetological Conservation and Biology 7(2): 109–114. Submitted: 30 January 2012; Accepted: 30 June 2012; Published: 10 September 2012. SEXUAL DIMORPHISM IN HEAD SIZE IN THE LITTLE BROWN SKINK (SCINCELLA LATERALIS) 1 BRIAN M. BECKER AND MARK A. PAULISSEN Department of Natural Sciences, Northeastern State University, Tahlequah, Oklahoma 74464, USA 1Corresponding author, e-mail: [email protected] Abstract.—Many species of skinks show pronounced sexual dimorphism in that males have larger heads relative to their size than females. This can occur in species in which males have greater body length and show different coloration than females, such as several species of the North American genus Plestiodon, but can also occur in species in which males and females have the same body length, or species in which females are larger than males. Another North American skink species, Scincella lateralis, does not exhibit obvious sexual dimorphism. However, behavioral data suggest sexual differences in head size might be expected because male S. lateralis are more aggressive than females and because these aggressive interactions often involve biting. In this study, we measured snout-to-vent length and head dimensions of 31 male and 35 female S. lateralis from northeastern Oklahoma. Females were slightly larger than males, but males had longer, wider, and deeper heads for their size than females. Sexual dimorphism in head size may be the result of sexual selection favoring larger heads in males in male-male contests. However, male S. lateralis are also aggressive to females and larger male head size may give males an advantage in contests with females whose body sizes are equal to or larger than theirs. -
Reproductionreview
REPRODUCTIONREVIEW The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes James U Van Dyke, Matthew C Brandley and Michael B Thompson School of Biological Sciences, University of Sydney, A08 Heydon-Laurence Building, Sydney, New South Wales 2006, Australia Correspondence should be addressed to J U Van Dyke; Email: [email protected] Abstract Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. -
Australian Capital Territory & Yass Valley Reptiles
Australian Capital Territory & Yass Valley Reptiles Geoff Robertson 4 June 2017 Turtle (1-2 species) Lizard Gecko (2) Legless lizard (4-5) Dragon (6) Gonna (2) Skink (32-35) Egernia group - chunky (9) Eugongylus group - striped (9-10) Sphenomorphus group - red (14) Snakes Blind (1) Total species = 57-66 Python (1?) Elapid (9-12) Murray (short-neck) turtle (above left) Emydura macquarii Eastern long-neck turtle (above right) Chelodina longicollis Lizards Monitors (goannas) Dragons Skinks Geckos Measuring length lizards & snakes: Legless TL - total length. lizards SVL - tip of the nose (snout) to vent. Dragons Physignathus lesueurii, Australia: 11 genera, 70 species. SVL 245 mm ACT/Yass: 5 genera, 6 species Common: Pogona barbata, Water dragon (top), Aust: 1 SVL 250 mm species. Eastern bearded dragon (bottom), Aust: 6 species. Jacky lizard or tree dragon. Three similar dragons Jacky (top), Nobbi (middle) and Mountain (bottom). SVL is Jacky - 120mm Nobbi - 84mm Mountain - 82mm However, all dragons (including water & bearded ) look similar when young. Photos top to bottom - Amphibolurus mutinous and A. nobbi, & Rankina diemensis. by Warren Saunders, John Wombey and Roger Farrow. Grassland earless dragon Eight earless dragon species in Australia. GED found in some natural grassland sites, climbs tussock grasses otherwise a ground dweller. Unlike other dragons, Tail slight/curls. Populations - ACT & southern Monaro. GED thought extinct, re-discovered, crashed in drought, captive breeding, future? Tympanocryptis pinguicolla. SVL 55mm. Bottom photo: Margaret Ning. Jacky dragon Bearded dragon Water dragon Nobbi dragon Mountain dragon Grassland earless dragon Gecko Australia: 18 genera & 111 species ACT/Yass: 2 species Stone gecko (right) Marble gecko (below) Diplodactylus vittatus, SVL 50mm Photo John Wombey Christinus marmaratus, SVL 70mm Photo Margaret Ning Legless lizards Related to geckos Australia: 7 genera & 38 species ACT/Yass: 2 genera & 5 species Unlike snakes: Lialis burtonis, SVL170mm Photo John Wombey • Large fleshy tongue (cf forked). -
Terrestrial Fauna Assessment
Cameby Downs Continued Operations Project EnvironmentalEnvironmental Values Assessment Assessment APPENDIX E Terrestrial Fauna Assessment Cameby Downs Continued Operation Project Terrestrial Fauna Assessment May 2018 Syntech Resources Pty Ltd ecology / vegetation / wildlife / aquatic ecology / GIS Executive summary The Cameby Downs Mine is owned and operated by Syntech Resources Pty Ltd (Syntech) and is managed by Yancoal Australia Ltd (Yancoal). Syntech are considering expanding their operation area as part of the Cameby Downs Continued Operations Project (the Project) and an environmental values statement is being prepared to accompany a major Environmental Authority Amendment application. Syntech commissioned Ecosure Pty Ltd (Ecosure) to undertake terrestrial fauna field surveys and ecological assessments to address the minimum requirements in the Queensland Department of Environment and Heritage (DEHP) Information Request for an Amendment Application for an Environmental Authority. To supplement previous fauna surveys undertaken over the last decade, Ecosure undertook preliminary surveys and targeted surveys in July 2016. More comprehensive surveys followed in October 2016. Overall, six detailed trapping sites, 50 observational surveys and 56 targeted surveys were undertaken across the study area to determine the likelihood of occurrence of species listed as conservation significant species under State legislation and/ or threatened under Commonwealth legislation. A total of five conservation significant species have been recorded during field surveys (including previous surveys) conducted in the study area. These were: • koala (Phascolarctos cinereus) • glossy black-cockatoo (Calyptorhynchus lathami lathami) • grey snake (Hemiaspis damelii) • short-beaked echidna (Tachyglossus aculeatus) • yakka skink (Egernia rugosa) (during previous surveys only). A total of 192 species were recorded during the field surveys, including 13 amphibians, 101 birds, 25 mammals and 26 reptiles.