The Importance of DNA Repair for Maintaining Oocyte Quality In

Total Page:16

File Type:pdf, Size:1020Kb

The Importance of DNA Repair for Maintaining Oocyte Quality In Human Reproduction Update, Vol.24, No.2 pp. 119–134, 2018 Advanced Access publication on January 25, 2018 doi:10.1093/humupd/dmy002 The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, Downloaded from https://academic.oup.com/humupd/article-abstract/24/2/119/4825064 by Biomedical Library user on 24 January 2020 environmental toxins and maternal ageing † † Amy L. Winship , Jessica M. Stringer , Seng H. Liew, and Karla J. Hutt * Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia *Correspondence address. Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia. E-mail: [email protected] orcid.org/0000-0002-5111-8389 Submitted on August 1, 2017; resubmitted on December 5, 2017; editorial decision on January 2, 2018; accepted on January 14, 2018 .............................TABLE OF CONTENTS.............................................................................................. • Introduction • Methods • DNA double-strand breaks • Homologous recombination and non-homologous end-joining • DNA DSB repair in meiotic oocytes Meiosis The induction and repair of meiotic DSBs • DNA DSB repair in primordial follicle oocytes Evidence for efficient repair of DSBs in primordial follicle oocytes Ionizing radiation Chemotherapy Reproductive ageing Environmental toxicants • Evidence for DNA damage response in mature oocytes • Future directions: augmenting DNA repair to protect oocytes during ageing or cancer treatment • Conclusions BACKGROUND: Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are con- sidered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during repro- ductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The † These authors contributed equally. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: [email protected] 120 Winship et al. repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE: This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS: PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. Downloaded from https://academic.oup.com/humupd/article-abstract/24/2/119/4825064 by Biomedical Library user on 24 January 2020 OUTCOMES: Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS: Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal age- ing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity. Key words: oocyte / DNA repair / primordial follicle / radiotherapy / chemotherapy / ageing Introduction exogenous factors, such as γ-irradiation (Kerr et al., 2012c), chemo- therapy (Kujjo et al., 2010; Titus et al., 2013) and environmental toxi- Within the ovary, oocytes are stored in long-lived structures called cants (Susiarjo et al., 2007; Hunt et al., 2012; Zhang et al., 2012) also primordial follicles. Each primordial follicle comprises a non-growing, results in DSB formation in primordial follicle oocytes. In each of meiotically arrested oocyte, surrounded by a single layer of squamous these contexts, DNA DSBs readily induce primordial follicle oocyte granulosa cells. Primordial follicles are the storage unit of the female death (Suh et al., 2006; Kerr et al., 2012c; Carroll and Marangos, germline and following their activation to enter folliculogenesis, they 2013; Hutt et al., 2013; Rinaldi et al., 2017; Bolcun-Filas et al., 2014). give rise to fully grown, mature, developmentally competent oocytes. The accelerated depletion of the pool of primordial follicles that While some studies have raised the possibility that germline stem ensues can lead to premature ovarian failure (POF), infertility and cells may exist in the adult ovary, their contribution to ovarian func- early menopause, the latter of which is associated with increased risk tion and fertility is controversial (Johnson et al., 2004; Zou et al., of adverse health outcomes for women such as cardiovascular dis- 2009). Consequently, it remains widely accepted that new primordial ease and osteoporosis (Green et al., 2009). follicles cannot be produced after birth even if the supply becomes Alternatively, recent studies in animals and humans have provided prematurely depleted (Kerr et al., 2012a). Thus, it is essential that evidence that primordial follicle oocytes are capable of executing an the genetic integrity of primordial follicle oocytes is maintained to efficient repair program when faced with DNA DSBs, in order to ensure that only those of the highest quality are available for ovula- protect fertility and the genomic integrity of future generations tion, fertilization and subsequent embryonic development. (Oktem and Oktay, 2007; Soleimani et al., 2011; Kerr et al., 2012c). To protect genome integrity, cells have evolved a network of path- Indeed, transcript profiling indicates that oocytes at all stages of ways called the DNA damage response, which is responsible for development have the capacity to repair damaged DNA (Wang detecting DNA damage, activating checkpoints leading to cell cycle et al., 2004; Zeng et al., 2004; Pan et al., 2005; Yoon et al., 2006; Cui arrest and coordinating the repair process. While there are many et al., 2007; Gasca et al., 2007; Menezo et al., 2007; Su et al., 2007; types of DNA lesions (Sancar et al., 2004), double-strand breaks Jaroudi et al., 2009; Zheng et al., 2005). (DSBs) are considered to be the most severe form. Under most cir- For the purpose of this review, we have focused on the oocyte, cumstances, DNA DSBs are highly detrimental to chromosome integ- but it is clear that follicles, the functional unit of the ovary, require rity, cellular function and viability. However, DNA DSBs are co-operation between the oocyte and granulosa cells, as well as the deliberately induced and efficiently repaired in oocytes during meiotic ovarian stroma and vasculature, all of which could be damaged by recombination. Indeed, meiotic DNA DSB formation, processing and exogenous agents, or ageing. Indeed, the factors required for oocyte repair are strictly regulated, both spatially and temporally, to ensure DNA DSB repair also play important roles in DNA stability and that apoptosis is only initiated in the event that repair does not occur DNA damage repair in somatic cells, which are beyond the scope of (Longhese et al., 2009; Baudat et al., 2013; Carroll and Marangos, the current review. In this review, the main pathways that cells 2013; Collins and Jones, 2016). employ for repairing DNA DSBs will be briefly described. The DNA In addition to the requirement for oocytes to repair physiologically repair response that occurs in the context of meiosis may inform us induced DSBs during meiotic recombination, the oocytes maintained of the potential mechanisms of DNA repair induced in the response in primordial follicles must also have the capacity to repair breaks in of oocytes to exogenous damage and will therefore briefly be dis- their DNA during their prolonged meiotic arrest. Recent evidence cussed. We will primarily focus our review on the evidence for DNA suggests that DNA DSBs accumulate in primordial follicle oocytes DSB repair in primordial follicle oocytes in response to exogenous during maternal ageing, likely as a consequence of cellular metabolism genotoxic stress or ageing, touching on recent novel findings in and elevated oxidative stress (Titus et al., 2013). Exposure to mature oocytes, where relevant. DNA repair in oocytes 121 Methods sister-chromatid template, which allows for accurate DNA synthesis and repair. Key proteins involved in HR include,
Recommended publications
  • Diagnostic Evaluation of the Infertile Female: a Committee Opinion
    Diagnostic evaluation of the infertile female: a committee opinion Practice Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama Diagnostic evaluation for infertility in women should be conducted in a systematic, expeditious, and cost-effective manner to identify all relevant factors with initial emphasis on the least invasive methods for detection of the most common causes of infertility. The purpose of this committee opinion is to provide a critical review of the current methods and procedures for the evaluation of the infertile female, and it replaces the document of the same name, last published in 2012 (Fertil Steril 2012;98:302–7). (Fertil SterilÒ 2015;103:e44–50. Ó2015 by American Society for Reproductive Medicine.) Key Words: Infertility, oocyte, ovarian reserve, unexplained, conception Use your smartphone to scan this QR code Earn online CME credit related to this document at www.asrm.org/elearn and connect to the discussion forum for Discuss: You can discuss this article with its authors and with other ASRM members at http:// this article now.* fertstertforum.com/asrmpraccom-diagnostic-evaluation-infertile-female/ * Download a free QR code scanner by searching for “QR scanner” in your smartphone’s app store or app marketplace. diagnostic evaluation for infer- of the male partner are described in a Pregnancy history (gravidity, parity, tility is indicated for women separate document (5). Women who pregnancy outcome, and associated A who fail to achieve a successful are planning to attempt pregnancy via complications) pregnancy after 12 months or more of insemination with sperm from a known Previous methods of contraception regular unprotected intercourse (1).
    [Show full text]
  • Maximizing the Ovarian Reserve in Mice by Evading LINE-1 Genotoxicity
    ARTICLE https://doi.org/10.1038/s41467-019-14055-8 OPEN Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity Marla E. Tharp1,2,Safia Malki1 & Alex Bortvin 1* Female reproductive success critically depends on the size and quality of a finite ovarian reserve. Paradoxically, mammals eliminate up to 80% of the initial oocyte pool through the enigmatic process of fetal oocyte attrition (FOA). Here, we interrogate the striking correlation 1234567890():,; of FOA with retrotransposon LINE-1 (L1) expression in mice to understand how L1 activity influences FOA and its biological relevance. We report that L1 activity triggers FOA through DNA damage-driven apoptosis and the complement system of immunity. We demonstrate this by combined inhibition of L1 reverse transcriptase activity and the Chk2-dependent DNA damage checkpoint to prevent FOA. Remarkably, reverse transcriptase inhibitor AZT-treated Chk2 mutant oocytes that evade FOA initially accumulate, but subsequently resolve, L1-instigated genotoxic threats independent of piRNAs and differentiate, resulting in an increased functional ovarian reserve. We conclude that FOA serves as quality control for oocyte genome integrity, and is not obligatory for oogenesis nor fertility. 1 Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA. 2 Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA. *email: [email protected] NATURE COMMUNICATIONS | (2020) 11:330 | https://doi.org/10.1038/s41467-019-14055-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14055-8 ogenesis programs across metazoans reflect diverse suggested the involvement of an additional mechanism(s) in Oreproductive strategies observed in nature.
    [Show full text]
  • Age and Fertility: a Guide for Patients
    Age and Fertility A Guide for Patients PATIENT INFORMATION SERIES Published by the American Society for Reproductive Medicine under the direction of the Patient Education Committee and the Publications Committee. No portion herein may be reproduced in any form without written permission. This booklet is in no way intended to replace, dictate or fully define evaluation and treatment by a qualified physician. It is intended solely as an aid for patients seeking general information on issues in reproductive medicine. Copyright © 2012 by the American Society for Reproductive Medicine AMERICAN SOCIETY FOR REPRODUCTIVE MEDICINE Age and Fertility A Guide for Patients Revised 2012 A glossary of italicized words is located at the end of this booklet. INTRODUCTION Fertility changes with age. Both males and females become fertile in their teens following puberty. For girls, the beginning of their reproductive years is marked by the onset of ovulation and menstruation. It is commonly understood that after menopause women are no longer able to become pregnant. Generally, reproductive potential decreases as women get older, and fertility can be expected to end 5 to 10 years before menopause. In today’s society, age-related infertility is becoming more common because, for a variety of reasons, many women wait until their 30s to begin their families. Even though women today are healthier and taking better care of themselves than ever before, improved health in later life does not offset the natural age-related decline in fertility. It is important to understand that fertility declines as a woman ages due to the normal age- related decrease in the number of eggs that remain in her ovaries.
    [Show full text]
  • Prevalence and Clinical Associations with Premature Ovarian Insufficiency, Early Menopause, and Low Ovarian Reserve in Systemic Sclerosis
    Clinical Rheumatology https://doi.org/10.1007/s10067-020-05522-5 ORIGINAL ARTICLE Prevalence and clinical associations with premature ovarian insufficiency, early menopause, and low ovarian reserve in systemic sclerosis Arporn Jutiviboonsuk1 & Lingling Salang2 & Nuntasiri Eamudomkarn2 & Ajanee Mahakkanukrauh1 & Siraphop Suwannaroj1 & Chingching Foocharoen1 Received: 9 October 2020 /Revised: 5 November 2020 /Accepted: 23 November 2020 # International League of Associations for Rheumatology (ILAR) 2020 Abstract The low prevalence of pregnancy in women with systemic sclerosis (SSc) is due to multi-factorial causes, including premature ovarian insufficiency (POI). The study aimed to determine the prevalence of POI, early menopausal status, and any clinical associations of these among Thai female SSc patients. An analytical cross-sectional study was conducted among female SSc patients between 18 and 45 years of age. The eligible patients underwent blood testing for follicle stimulating hormone and anti- mullerian hormone levels, gynecologic examination, and transvaginal ultrasound for antral follicle count. We excluded patients having surgical amenorrhea, previous radiation, and history of hormonal contraception < 12 weeks and pregnancy. A total of 31 patients were included. The majority (67.7%) had diffuse cutaneous systemic sclerosis. Three patients were POI with a preva- lence of 9.7%. The factors associated with POI were a high cumulative dose of cyclophosphamide (CYC) (p =0.02)andthelong duration of CYC used (p = 0.02). After excluding POI, early menopause was detected in 10 patients with a prevalence of 35.7%. The factors associated with early menopause were long disease duration (p = 0.02), high cumulative dose of CYC (p =0.03),and high cumulative dose of prednisolone (p = 0.02).
    [Show full text]
  • Ovarian Reserve (Predicting Fertility Potential in Women)
    Contact: (214) 827-8777 ________________________________________________________________________________________________ Ovarian Reserve (Predicting Fertility Potential in Women) Ovarian reserve is a woman’s fertility potential. With age, the ability to get pregnant reduces due to a decrease in the number and quality of eggs, and the presence of chromosomal abnormalities in the eggs. Generally, a woman can begin to face difficulty in conceiving by the age of 36 years or older; however, this age can vary among individuals. An individual’s ovarian reserve and ability to conceive can be evaluated through several tests. Ovarian reserve is commonly assessed by measuring the levels of different hormones in the blood. • Follicle stimulating hormone (FSH): FSH levels in the blood are measured at the beginning of the menstrual cycle (day 1 to 5, usually on day 3). The level of this hormone show how the ovaries and the pituitary gland are working together. Generally, FSH levels are low at the beginning of menstruation and then rises to initiate the growth of a follicle and maturing of an egg. • Estradiol hormone: Estradiol levels in the blood are also measured at the start of the menstrual cycle (day 1 to 5, usually on day 3). Similar to FSH, the level of estradiol hormones also shows how the ovaries and the pituitary gland are working. High FSH and/estradiol levels generally indicate a lower chance of conceiving by ovulation induction or IVF. • Antimullerian hormone (AMH): AMH is excreted by follicles and indicates the number of eggs available at the time of the blood test. The test for AMH can be performed anytime during the cycle.
    [Show full text]
  • Crosstalk Between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing
    cells Review Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing Mila Maidarti 1,2,3, Richard A. Anderson 1 and Evelyn E. Telfer 2,* 1 MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; [email protected] (M.M.); [email protected] (R.A.A.) 2 Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK 3 Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia * Correspondence: [email protected]; Tel.: +44-(0)131-650-5393 Received: 31 October 2019; Accepted: 13 January 2020; Published: 14 January 2020 Abstract: The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing.
    [Show full text]
  • Testing and Interpreting Measures of Ovarian Reserve: a Committee Opinion
    ASRM PAGES Testing and interpreting measures of ovarian reserve: a committee opinion Practice Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama Ovarian reserve is defined as the number of oocytes remaining in the ovary, or oocyte quantity (oocyte number). Markers of ovarian reserve include hormone levels and sonographically measured features of the ovaries. These markers can be useful as predictors of oocyte yield following controlled ovarian stimulation and oocyte retrieval. However, they are poor predictors of reproductive potential independently from age. This document replaces the document of the same name last published in 2012 (Fertil Steril 2012;98:1407–15). (Fertil SterilÒ 2020;114:1151–7. Ó2020 by American Society for Reproductive Medicine.) El resumen está disponible en Español al final del artículo. Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/posts/31403 he process of reproductive aging oocyte quality, which relates to the Inhibin B and AMH are glycopro- has traditionally centered on the potential of a fertilized oocyte to result tein hormones produced by small T principle that human oocytes in a live-born infant. Female infants are ovarian follicles and are therefore peak in number during fetal life, un- born with 500,000 to 1 million oo- direct measures of the follicular pool. dergo ovulation or atresia thereafter, cytes, follicular atresia and ovulation Whereas AMH is primarily secreted by and do not regenerate. Reproductive result in a slow depletion of oocyte primary, preantral, and early antral fol- and ovarian senescence occurs with number over time, and menopause sub- licles, inhibin B is secreted primarily by depletion of the number of oocytes, or sequently ensues.
    [Show full text]
  • Genetic Insights Into the Biological Mechanisms Governing Human Ovarian Ageing
    medRxiv preprint doi: https://doi.org/10.1101/2021.01.11.20248322; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Title: Genetic insights into the biological mechanisms governing human ovarian ageing Katherine S Ruth*1, Felix R Day*2, Jazib Hussain*3, Ana Martínez-Marchal*4,5, Catherine E Aiken6,7, Ajuna Azad3, Deborah J Thompson8, Hironori Abe9, Jane L Tarry-Adkins6,7, Javier Martin Gonzalez10, Annique Claringbould11, Olivier B Bakker12, Patrick Sulem13, Sandra Turon14, N Charlotte Onland-Moret15, Emil Peter Trane Hertz3,16, Pascal N Timshel17,18, Vallari Shukla3, Rehannah Borup3, Kristina W Olsen19,3, Mònica Ferrer-Roda4,5, Yan Huang4,5, Stasa Stankovic2, Paul RHJ Timmers20,21, Thomas U Ahearn22, Behrooz Z Alizadeh23, Elnaz Naderi23, Irene L Andrulis24,25, Alice M Arnold26,27, Kristan J Aronson28, Annelie Augustinsson29, Stefania Bandinelli30, Caterina M Barbieri31, Robin N Beaumont1, Heiko Becher32, Matthias W Beckmann33, Stefania Benonisdottir13, Sven Bergmann34,35, Murielle Bochud36, Eric Boerwinkle37, Stig E Bojesen38,39,40, Manjeet K Bolla41, Dorret I Boomsma42, Nicholas Bowker2, Jennifer A Brody43, Linda Broer44, Julie E Buring45,46, Archie Campbell47, Harry Campbell20, Jose E Castelao48, Eulalia Catamo49, Stephen J Chanock22, Georgia Chenevix-Trench50, Marina Ciullo51,52, Tanguy Corre36,34,35, Fergus
    [Show full text]
  • Antioxidant Intervention Attenuates Aging-Related Changes in the Murine Ovary and Oocyte
    life Article Antioxidant Intervention Attenuates Aging-Related Changes in the Murine Ovary and Oocyte Mandy G. Katz-Jaffe * , Sydney L. Lane , Jason C. Parks, Blair R. McCallie, Rachel Makloski and William B. Schoolcraft Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA; [email protected] (S.L.L.); [email protected] (J.C.P.); [email protected] (B.R.M.); [email protected] (R.M.); [email protected] (W.B.S.) * Correspondence: MKatz-Jaff[email protected]; Tel.: +1-303-788-8300 Received: 15 September 2020; Accepted: 20 October 2020; Published: 22 October 2020 Abstract: Advanced maternal age (AMA) is associated with reduced fertility due in part to diminished ovarian follicle quantity, inferior oocyte quality, chromosome aneuploidy, and lower implantation rates. Ovarian aging is accompanied by increased oxidative stress and blunted antioxidant signaling, such that antioxidant intervention could improve reproductive potential. The first aim of this study was to determine the molecular effects of antioxidant intervention in the ovaries and oocytes of aged mice, utilizing a supplement containing only naturally occurring açaí (Euterpe oleracea) with an oxygen radical absorbance capacity of 208,628 µmol Trolox equivalent (TE)/100 g indicating high antioxidant activity. Nine month old female CF-1 mice were administered 80 mg/day antioxidants (n = 12) or standard diet (n = 12) for 12 weeks. In the ovary, antioxidant treatment upregulated β-adrenergic signaling, downregulated apoptosis and proinflammatory signaling, and variably affected cell growth and antioxidant pathways (p < 0.05). Exogenous antioxidants also increased the oocyte expression of antioxidant genes GPX1, SOD2, and GSR (p < 0.05). A feasibility analysis was then conducted on female AMA infertility patients as a proof-of-principle investigation.
    [Show full text]
  • There Is No Neo-Oogenesis in the Adult Mammalian Ovary Erişkin Memeli Overde Neo-Oogenezi Yoktur
    270 Opinion There is no neo-oogenesis in the adult mammalian ovary Erişkin memeli overde neo-oogenezi yoktur Alain Gougeon1, Elena Notarianni2 1Inserm U1052, ANIPATH U.F.R. de médecine Lyon, Lyon, France 2Department of Biological and Biomedical Sciences, Durham University, Durham, UK Introduction oocyte, whereas degenerated and fragmented oocytes were only observed in atretic follicles at a late stage of atresia and In 2004 and 2005, Johnson et al. published two very pro- which were previously antral follicles. Thus, it emerges that vocative studies (1, 2), in which they claimed that in the Johnson et al. (1), misattributed as atretic immature follicles adult mouse ovary, neo-oogenesis takes place and originates those 200 to 400 atretic follicles that were already present at either from the ovarian surface epithelium (OSE) (1) or from least 8 days earlier, as shown by their BrdU labeling. How can the bone marrow (BM) via circulating blood cells (2). These we explain such a misinterpretation? Returning to the criteria studies were provocative since they challenged the long-held used to categorize atresia above, whereas condensation of view that mammals are born with a finite number of eggs that oocytes (Figure 1) constitutes the normal fate of atretic rest- declines with ageing. Consequently, an intensive discussion ing follicles, and oocyte degeneration the normal fate of early has developed among experts in the field, some of whom are growing follicles, fragmented oocytes are only seen in antral proponents of neo-oogenesis, while others are opponents follicles at a late stage of atresia (Figure 2). When antral fol- licles undergo atresia, they progressively lose their antrum (Table 1).
    [Show full text]
  • Assessment of Ovarian Reserve in Infertile Patients
    REVIEW ARTICLE Assessment of Ovarian Reserve in Infertile Patients *P Begum1, DR Shaha2, Mahbuba3, L Sanjowal4, R Barua5, KM Hassan6 ABSTRACT Reduced ovarian reserve is a condition characterized by a reduced competence of the ovary to produce oocyte due to advanced age or congenital, medical surgical and idiopathic causes. Age is considered to be the principal factor in determining the reduction of ovarian reserve, especially in woman over 40 years of age, but it's well known that a premature reduction of ovarian reserve can also occur in young patients. Management of patients with diminished ovarian reserve is challenging for fertility experts and frequently the only option to conceive is represented by assisted reproduction technologies. Here we reviewed the aetiology, presentation and diagnosis of reduced ovarian reserve in advanced and young aged women and recent advances in the management of infertility in these women. Key Words: Reduced ovarian reserve; Diminished ovarian reserve; Premature ovarian failure Introduction The reduced ovarian reserve is a condition of by the Childhood Cancer Survivor Study show that reduced ability of the ovary to produce oocytes due the 6.3% of women who received cure for cancer to advanced age or congenital, medical, surgical and suffered of acute ovarian failure9. In this manuscript idiopathic causes. This condition, also known as we reviewed the aetiology, presentation and diminished ovarian reserve (DOR) is often used to diagnosis of reduced ovarian reserve in advanced and characterize women at risk for poor performance young aged women and recent advances in the with assisted reproductive technologies (ART) due to management of infertility in these women.
    [Show full text]
  • AMH/MIS As a Contraceptive That Protects the Ovarian Reserve During
    AMH/MIS as a contraceptive that protects the ovarian PNAS PLUS reserve during chemotherapy Motohiro Kanoa,b, Amanda E. Sosulskia,b, LiHua Zhanga,b, Hatice D. Saatcioglua,b, Dan Wangc, Nicholas Nagykerya,b, Mary E. Sabatinid, Guangping Gaoc, Patricia K. Donahoea,b,1, and David Pépina,b,1 aPediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114; bDepartment of Surgery, Harvard Medical School, Boston, MA 02115; cHorae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655; and dDepartment of Obstetrics and Gynecology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114 Contributed by Patricia K. Donahoe, December 29, 2016 (sent for review December 16, 2016; reviewed by Richard N. Freiman, Bruce D. Murphy, and Teresa K. Woodruff) The ovarian reserve represents the stock of quiescent primordial they are selected for activation. However, some studies suggest follicles in the ovary which is gradually depleted during a woman’s MIS may be an important gatekeeper of their recruitment. The reproductive lifespan, resulting in menopause. Müllerian inhibiting default state of primordial follicles is skewed toward activation, substance (MIS) (or anti-Müllerian hormone/AMH), which is pro- as evidenced by both transgenic mouse models and in vitro duced by granulosa cells of growing follicles, has been proposed as ovarian culture experiments. Although MIS-knockout females a negative regulator of primordial follicle activation. Here we show were initially fertile (8), young mice were found to contain more that long-term parenteral administration of superphysiological doses preantral and small antral follicles, and the window of fertility of MIS, using either an adeno-associated virus serotype 9 (AAV9) was shortened.
    [Show full text]