Light Dependant Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Light Dependant Reactions ` Photosynthesis converts energy of the sun into chemical energy of glucose ` Small portion of Sun’s energy reaches earth and even smaller portion gets converted into energy ` Still, photosynthesizing organisms synthesize about 1.4 X 1015 kg of energy-storing glucose and other sugars in one year ` 1,400,000,000,000,000 ` Most of the glucose is converted to cellulose and other structural tissues. ` Glucose also converted to other sugars as well as storage forms of carbohydrates (starch) ` Also, sugars produced by photosynthesis are involved in the synthesis of other cellular substances ` Eg. Amino acids – proteins ` Products of photosynthesis account for 95% of dry weight of plants ` → 6CO2 (g) + 6H2O(l) + energy C6H12O6 (s) + O2(g) ` Arrow is misleading, there are over 100 reactions that occur that lead to the end products ` Photo means capturing light energy ` Synthesis means to produce (or in this case, production of carbohydrates) ` Photosynthesis is made up of two types of reactions ` Light-dependant reactions – solar energy is trapped to generate two high energy compounds: ATP and NADPH (reduce nicotinamide adenine dinucleotide phosphate), has large amounts of reducing power ` Light independent reactions – the energy of ATP and the reducing power of NADPH are used to reduce carbon dioxide to make glucose which can than be converted into starch for storage ` Pigments in thylakoid membranes absorb light energy ` Chlorophyll solution reflects yellow and green light ` Previous figure shows chlorophyll has two chlorophylls a and b ` Also contains another pigment called beta- carotene ` Beta-carotene is part of large class of pigments called carotenoids ` They absorb blue and green light so they are red, yellow and orange in colour. ` Chlorophyll is bound to the membranes of the thylakoids inside the chloroplast ` Chlorophyll and other pigments are arrange in the thylakoid membranes in clusters called photosystems ` Two photosystems ◦ Photosystem I (PSI) (700 nm) ◦ Photosystem II (PSII) (680 nm) These were named in the order that they were discovered, NOT in the sequence they occur ` Made up of pigment molecules that include a dozen or more chlorophyll molecules as well as a few carotenoid molecules ` Also present is a molecule that accepts electrons ` All pigments molecules can absorb energy of various wavelengths ` However, they always pass the energy to one specialized, electron accepting chlorophyll a molecule called the reaction centre. (antenna analogy) ` Each pigment absorbs light of different colours ` Having a variety of pigments enables a plant to use a greater percentage of the Sun’s light ` Chlorophyll is bound to membranes of thylakoids in the chloroplasts ` Chlorophyll is arranged in clusters called photosystems ` Plant and algae chloroplasts have two photosystems ` Photosystem I (PSI) ` Photosystem II (PSII) ` Named after the order scientists discovered them ` When reaction centre receives the energy, the electron in the reaction centre becomes “excited” ` This means the electron is raised to a higher energy level ` The electron is then passed on to an electron-accepting molecule ` A series of progressively stronger electron acceptors; each time an electron is transferred, energy is released. ` ETS important in energy production in cells. ` The e- leave the reaction center from PS II and goes to the electron-acceptor ` This leaves the reaction center short an e- ` This electron must be replaced before PSII can accept light energy to excite ANOTHER e- ` The new e- comes from the splitting of a H2O molecule. O2 that is released by plants comes from this type of reaction ` Next from the electron-acceptor the energized e- is transferred along a series of electron carrying molecules. ` Together these are called the Electron transport system (ETS) ` With each transfer, the e- releases a small amount of energy ` This energy released helps to push H+ ions from the stroma across the thylakoid membrane and into the thylakoid space (area inside the thylakoid) ` When hydrogen ions are forced from the stroma to the thylakoid, they can’t diffuse back across the membrane ` Membrane is impermeable to these ions ` Embedded in membrane is a special structure called ATP synthase ` This is the only pathway for the hydrogen ions to move down their concentration gradient ` This pathway is linked to a mechanism that bonds a free phosphate group to ADP to form ATP. ` As hydrogen moves down the concentration gradient through the ATP synthase, the energy of the gradient is used to generate ATP molecules. ` The linking of the movement of hydrogen ions to the production of ATP is called chemiosmosis ` We will see this again in the mitochondria during C/R ` Plants use chlorophyll to trap solar energy and convert it to chemical energy. ` We’ve figured out how to do this as well, in a large scale, our space stations have large solar panels ` On small scale, solar calculators ` On Earth though, solar cells cannot provide enough energy that society needs ` We use fossil fuels for energy but produce to much CO2 ` If we could use hydrogen cells it would be great for a fuel source as its byproduct is water ` Unfortunately there is Not enough H2(g) in environment ` It takes more energy to split water than hydrogen combustion releases ` Scientists are trying to mimic PSII ` When there is enough NADPH and ATP in the stroma, the energy from these molecules can be used to synthesize glucose ` Series of reactions that synthesize glucose is called the Calvin-Benson cycle ` Named after Melvin Calvin and Andrew Benson ` Used a radioactive carbon tracer to discover the reaction ` 3 steps in this reaction Consumption: Water Formation: ATP, NADPH+, and oxygen ` Step 1 – Fixing Carbon Dioxide: carbon atom in carbon dioxide is chemically bonded to a pre-existing molecule in the stroma ` The molecule is a five-carbon compound called ribulose bisphosphate, aka: RuBP ` The resulting six carbon compound is unstable and immediately breaks down into two identical three carbon compounds ` These three carbon compounds are the first stable products of the products ` These three carbon compounds are the first stable products of the process ` Plants that demonstrate this process are called C3 plants ` Fixing Carbon Dioxide ` → → CO2 + RuBP unstable C6 2 C3 ` Step 2 – Reduction: The newly three carbon compounds are in a low energy stage ` To convert them into a higher energy state they are first activated by ATP and then reduced by NADPH ` The result of this reaction is two molecules of PGAL (short for glyceraldehyde -3 –phosphate) ` In their reduced state some of the PGAL molecules leave the cycle and may be used to make glucose ` The remaining PGAL molecules move on to the third stage ` Step 3 – Replacing RuBP: most of the reduced PGAL molecules are used to make more RuBP molecules ` Energy is required to break and reform the chemical bonds to make the five carbon RuBP from PGAL ` This cycle must be completed 6 times to synthesize one molecule of glucose. ` Of the 12 PGAL molecules made, 10 are used to regenerate RuBP, 2 are used to make glucose ` The process of moving from PSII to PSI, is not considered to be “cyclic” because the electrons that are first excited in PSII are not recycled through the system. ` Water replenishes the supply at PSII ` NADPH carries e- from PSI to the Calvin- Benson cycle. ` In the Calvin cycle there is a larger demand for ATP than for NADPH. ` Thus, when NADPH concentrations are sufficient, the cell will switch to cyclic photophosphorylation. This means the PSII will not be used in order to avoiding the splitting of water and addition NADPH production. ` Two types of reactions: ◦ Light-dependant and light-independent ` Two photosystems (PSI and PSII) ` PSII releases electrons when it is excited by photons of light – it transfers the e- to and then it is passed in the ETS ` Energy released in the ETS is used to force H ions across the thylakoid membrane ` Energy from this gradient is used to help generate ATP from ADP and phosphate by means of chemiosmosis ` As H ions move through the gradient, they drive the reaction that generates ATP to be used in the ‘Calvin-Benson cycle ` An e- from water that is split replaces the e- released in the PSII the oxygen molecule is converted to O2 and released ` When an e- from PSI is excited it is eventually used to reduce NADP+ to NADPH ` Calvin Benson cycle occurs in the stroma and synthesizes carbohydrates ` CO2 combines with RuBP to form a 6 C compound the splits into 2 Three-carbon compounds ` ATP and NADPH from the light dependent reactions provide energy and reducing power to for PGAL from the newly formed 3 carbon compounds ` 6 cycles produces 12 PGAL molecules 10 which regenerate PGAL and 2 which form glucose.
Recommended publications
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Photosynthetic Phosphorylation Above and Below 00C by David 0
    VOL. 48, 1962 BIOCHEMISTRY: HALL AND ARNON 833 10 De Robertis, E., J. Biophy8. Biochem. Cytol., 2, 319 (1956). 11 Eakin, R. M., and J. A. Westfall, ibid., 8, 483 (1960). 12 Eakin, R. M., these PROCEEDINGS, 47, 1084 (1961). 13 Wolken, J. J., in The Structure of the Eye, ed. G. K. Smelser (New York: Academic Press, 1961). 14 Wald, G., ibid. 16 Eakin, R. M., and J. A. Westfall, Embryologia, 6, 84 (1961). 16 Sj6strand, F. S., in The Structure of the Eye, ed. G. K. Smelser (New York: Academic Press, 1961). 17 Miller, W. H., in The Cell, ed. J. Brachet and A. E. Mirsky (New York: Academic Press, 1960), part IV. 18 Miller, W. H., J. Biophys. Biochem. Cytol., 4, 227 (1958). 19 Hesse, R., Z. wiss. Zool., 61, 393 (1896). 20 Bradke, D. L., personal communication. 21 Wolken, J. J., Ann. N. Y. Acad. Sci., 74, 164 (1958). 22 Rohlich, P., and L. J. Torok, Z. wiss. Zool., 54, 362 (1961). 28 Eakin, R. M., and J. A. Westfall, J. Ultrastr. Res. (in press). 24 Franz, V., Jena. Z. Naturwiss., 59, 401 (1923). PHOTOSYNTHETIC PHOSPHORYLATION ABOVE AND BELOW 00C BY DAVID 0. HALL* AND DANIEL I. ARNONt DEPARTMENT OF CELL PHYSIOLOGY, UNIVERSITY OF CALIFORNIA, BERKELEY Read before the Academy, April 25, 1962 CO2 assimilation in photosynthesis consists of a series of dark enzymatic reactions that are driven solely by adenosine triphosphate and reduced pyridine nucleotide. 1-4 The same reactions are now known to operate in nonphotosynthetic cells.5-"3 It follows, therefore, that the distinction between carbon assimilation in photosyn- thetic and nonphotosynthetic cells lies in the manner in which ATP14 and PNH214 are formed.
    [Show full text]
  • Bacterial Photophosphorylation: Regulation by Redox Balance* by Subir K
    VOL. 49, 1963 BIOCHEMISTRY: BOSE AND GEST 337 12 Hanson, L. A., and I. Berggird, Clin. Chim. Acta, 7, 828 (1962). 13 Stevenson, G. T., J. Clin. Invest., 41, 1190 (1962). 14 Burtin, P., L. Hartmann, R. Fauvert, and P. Grabar, Rev. franc. etudes clin. et biol., 1, 17 (1956). 15 Korngold, L., and R. Lipari, Cancer, 9, 262 (1956). 16Lowry, 0. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265 (1951). 17 Muller-Eberhard, H. J., Scand. J. Clin. and Lab. Invest., 12, 33 (1960). 18 Bergg&rd, I., Arkiv Kemi, 18, 291 (1962). 19 BerggArd, I., Arkiv Kemi, 18, 315 (1962). 20 Flodin, P., Dextran Gels and Their Application in Gel Filtration (Uppsala: Pharmacia, 1962). 21 Dische, Z., and L. B. Shettles, J. Biol. Chem., 175, 595 (1948). 22 Kunkel, H. G., and R. Trautman, in Electrophoresis, ed. M. Bier (New York: Academic Press, 1959), p. 225. 23Fleischman, J. B., R. H. Pain, and R. R. Porter, Arch. Biochem. Biophys., Suppl. 1, 174 (1962). 24 Porter, R. R., Biochem. J., 73, 119 (1959). 25 Edelman, G. M., J. F. Heremans, M.-Th. Heremans, and H. G. Kunkel, J. Exptl. Med., 112, 203 (1960). 26 Scheidegger, J. J., Intern. Arch. Allergy Appl. Immunol., 7, 103 (1955). 27 Yphantis, D. A., American Chemical Society, 140th meeting, Chicago, Abstracts of Papers, 1961, p. ic. 28 Gally, J. A. and G. M. Edelman, Biochim. Biophys. Acta, 60, 499 (1962). 29 Webb, T., B. Rose, and A. H. Sehon, Can. J. Biochem. Physiol., 36, 1159 (1958).
    [Show full text]
  • Photosynthesis
    ENVIRONMENTAL PLANT PHYSIOLOGY SESSION 3 Photosynthesis An understanding of the biochemical processes of photosynthesis is needed to allow us to understand how plants respond to changing environmental conditions. This session looks at the details of the physiology and considers how plants can adapt these processes. If you studied the foundation degree with Myerscough previously you will recognise that much of these session notes are a very similar to those provided for the Plant Biology Module. The difference is not in the content but in the level of understanding required! Page Introduction to Photosynthesis 2 First catch your light! 3 The Light Dependent Reaction 7 The Light Independent Reaction 11 Photosynthesis and the Environment 12 Alternative Carbon Fixation Strategies 16 Further Reading 19 LEARNING OUTCOMES You need to be able to describe the biochemical basis of photosynthesis including: • Describing the role of chloroplasts and chlorophyll • Describing the steps of the light reaction and stating its products • Describing the Calvin cycle or light independent reaction and stating its products • Describing the role and position of the electron transport chain • Identify the effects of environmental factors on the rate of photosynthesis and explain how these relate to your field of study • Describe adaptations used by plants to continue photosynthesis in conditions of environmental stress such as hot arid conditions or shade conditions 1 Introduction to Photosynthesis The sun is the main source of energy to all living things. Light energy from the sun is converted to the chemical energy of organic molecules by green plants by a complicated pathway of reactions called photosynthesis.
    [Show full text]
  • Quantum Efficiency of Photosynthetic Energy Conversion (Photosynthesis/Photophosphorylation/Ferredoxin) RICHARD K
    Proc. Natl. Acad. Sd. USA Vol. 74, No. 8, pp. 3377-81, August 1977 Biophysics Quantum efficiency of photosynthetic energy conversion (photosynthesis/photophosphorylation/ferredoxin) RICHARD K. CHAIN AND DANIEL I. ARNON Department of Cell Physiology, University of California, Berkeley, Berkeley, California 94720 Contributed by Daniel I. Arnon, June 7,1977 ABSTRACT The quantum efficiency of photosynthetic with cyclic and noncyclic photophosphorylation and a "dark," energy conversion was investigated in isolated spinach chlo- enzymatic phase concerned with the assimilation of CO2 (8). roplasts by measurements of the quantum requirements of ATP has established that the formation by cyclic and noncyclic photophosphorylation cata- Fractionation of chloroplasts (9) light lyzed by ferredoxin. ATP formation had a requirement of about phase is localized in the membrane fraction (grana) that is 2 quanta per 1 ATP at 715 nm (corresponding to a requirement separable from the soluble stroma fraction which contains the of 1 quantum per electron) and a requirement of 4 quanta per enzymes of CO2 assimilation (10). Thus, in isolated and frac- ATP (corresponding to a requirement of 2 quanta per electron) tionated chloroplasts, investigations of photosynthetic quantum at 554 nm. When cyclic and noncyclic photophosphorylation efficiency can be focused solely on cyclic and noncyclic pho-. were operating concurrently at 554 nm, a total of about 12 account the conversion of quanta was required to generate the two NADPH and three ATP tophosphorylation, which jointly for needed for the assimilation of one CO2 to the level of glu- photon energy into chemical energy without the subsequent cose. or concurrent reactions of biosynthesis and respiration that cannot be avoided in whole cells.
    [Show full text]
  • Consequences of the Structure of the Cytochrome B6 F Complex for Its Charge Transfer Pathways ⁎ William A
    Biochimica et Biophysica Acta 1757 (2006) 339–345 http://www.elsevier.com/locate/bba Review Consequences of the structure of the cytochrome b6 f complex for its charge transfer pathways ⁎ William A. Cramer , Huamin Zhang Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA Received 17 January 2006; received in revised form 30 March 2006; accepted 24 April 2006 Available online 4 May 2006 Abstract At least two features of the crystal structures of the cytochrome b6 f complex from the thermophilic cyanobacterium, Mastigocladus laminosus and a green alga, Chlamydomonas reinhardtii, have implications for the pathways and mechanism of charge (electron/proton) transfer in the complex: (i) The narrow 11×12 Å portal between the p-side of the quinone exchange cavity and p-side plastoquinone/quinol binding niche, through which all Q/QH2 must pass, is smaller in the b6 f than in the bc1 complex because of its partial occlusion by the phytyl chain of the one bound chlorophyll a molecule in the b6 f complex. Thus, the pathway for trans-membrane passage of the lipophilic quinone is even more labyrinthine in the b6 f than in the bc1 complex. (ii) A unique covalently bound heme, heme cn, in close proximity to the n-side b heme, is present in the b6 f complex. The b6 f structure implies that a Q cycle mechanism must be modified to include heme cn as an intermediate between heme bn and plastoquinone bound at a different site than in the bc1 complex. In addition, it is likely that the heme bn–cn couple participates in photosytem + I-linked cyclic electron transport that requires ferredoxin and the ferredoxin: NADP reductase.
    [Show full text]
  • Chapter 19 Photophosphorylation
    Chapter 19 Part 3 Photophosphorylation Learning Goals: To Know 1. How energy of sunlight creates charge separation in the photosynthetic reaction complex and exciton transfer. 2. How electron transport is accompanied by the directional transport of protons across the membrane against their concentration gradient 3. Similarities and differences between plant-algal photosystems and bacterial photosystems. 4. How the electrochemical proton gradient drives synthesis of ATP by coupling the flow of protons via ATP synthase to conformational changes that favor formation of ATP in the active site 5. Roles of rhodopsins. Primary Production – Solar Energy Conversion Chloroplasts How do Photosynthetic Bacteria Fit in Here? Hill Reaction (driven by light) in Photophosphorylation 2 H2O + 2 A 2 AH2 + O2 “A” in Biological Systems = NADP+ so the Hill Reaction is: + + 2 H2O + 2 NADP 2 NADPH + 2H + O2 What Robert Hill in 1937 Actually Measured Was: The reduction of DCIP: going from blue to colorless. Electromagnetic Spectrum What is an Einstein? Light Energy Planck-Einstein Equation: E = h ν E = energy of a photon h = Planck’s Constant = 6.6 x 10-34 J.s v = vibration frequency ( of the wavelength of light; vibrational frequency increases with a decrease in wavelength ) In the text, E = hc/λ c/λ = v so red light, λ = 700 nm, c = 3x108m/s So that one red photon E = 2.83 x 10-19 J For an Einstein (a mole of photons) E = 168 kJ/einstein Chlorophyll a What is with the PINK ??? Phycobilins Carotenoids Photopigment Absorption Spectrum Chlorophyll Types Noon, Nov 18th: Surface Sun Light Spectra OE Pond Where is the Visible and Infra-red light ? Which one gets to the bottom? Noon, Nov 18th: Bottom The y-axis is in units of (einsteins/s)/m2 at each wavelength.
    [Show full text]
  • Effects of Low Concentrations of Ammonia and Methylamine
    Photophosphorylation by Chloroplasts: Effects of Low Concentrations of Ammonia and Methylamine Christoph Giersch Botanisches Institut der Universität Düsseldorf, Universitätsstr. 1, D-4000 Düsseldorf, Bundesrepublik Deutschland Z. Naturforsch. 37 c, 242-250 (1982); received December 23, 1981 Photophosphorylation, Uncoupling, Amines, Proton Motive Force, Chloroplasts, Chemiosmotic Theory Intact chloroplasts exposed to hypotonic assay conditions are capable of photophosphorylating exogenous ADP. The rate of phosphorylation by these unbroken plastids is increased by 10—50% upon the addition of low concentrations (< mM) of N H 3 or CH3NH 2. Stimulation of phosphory­ lation is abolished by washing chloroplasts with MgCl2. Evidence is presented that washing re­ moves a factor responsible for amine-induced increase of A TP production and that this factor is associated with the thylakoid membrane. Addition of CH3NH 2 increased the proton permeability of the thylakoid membrane of unbroken and washed chloroplasts during the light/dark transition. Hence, differences of the membrane permeability for protons between the two preparations seem not to be responsible for an increase of ATP production upon the addition of amines. Stimulation of photophosphorylation by methylamine is observed even at light itensities which do not saturate the proton motive force, which in turn is reduced upon the addition of the uncoupler. Apparently, phosphorylation can be stimulated, although the limiting driving force is diminished. It is con­ cluded that phosphorylation by unbroken chloroplasts under low light illumination is limited kinetically, not energetically. Consequences of these findings for observation made with intact chloroplasts are discussed. Introduction creased pmf in the presence of low amine * concen­ trations although the rate of steady-state light-de­ The chemiosmotic concept holds the trans­ pendent ATP production is increased [4].
    [Show full text]
  • BOOK REVIEWS Genes, Organisms, Populations: Controversies Over the Units of Selection Edited by Robert N
    BOOK REVIEWS Genes, organisms, populations: Controversies over the units of selection edited by Robert N. Brandon and Richard M. Burian. The MIT Press, Cambridge, Massachusetts, USA, 1984, -pp. xiv + 329, $ 34.44. He is a collection of papers on natural selection published over the'past 25 years. The unit (or units) of selection is the subject of discussion. Charles Darwin felt that the individual was the target of selection, not races, groups or populations. Alfred Wallace, on the other hand, thought that selection acted on groups in addition to the individual. Against this historical background of the two originators of the idea of natural selection, the editors have put together current views of selection, the levels as well as the units on which selection a&. The papers are grouped under three heads: Historical readings; Levels and units of selection; Models of selection. Each part has an introduction, contributed by the editors, who as students of philosophy appear to have found some sudden and unexplained interest in problems of evolution. Several of the papers included in the volume were written long before the question of natural selection hotted up some five years ago and so are of limited interest. Nevertheless, they are of considerable influence in determining the level at which selection is believed to operate. The main thrust of selection at levels higher than the individual level is offered by Altruism, which Darwin was clearly unaware of and which has only recently come to the fore. Seemingly contradictory, the different levels harmonize at a certain order; it seems to be the endeavour of the authors to find this conformation.
    [Show full text]
  • Do We Have a Thermotrophic Feature? James Weifu Lee
    www.nature.com/scientificreports OPEN Mitochondrial energetics with transmembrane electrostatically localized protons: do we have a thermotrophic feature? James Weifu Lee Transmembrane electrostatically localized protons (TELP) theory has been recently recognized as an important addition over the classic Mitchell’s chemiosmosis; thus, the proton motive force (pmf) is largely contributed from TELP near the membrane. As an extension to this theory, a novel phenomenon of mitochondrial thermotrophic function is now characterized by biophysical analyses of pmf in relation to the TELP concentrations at the liquid-membrane interface. This leads to the conclusion that the oxidative phosphorylation also utilizes environmental heat energy associated with the thermal kinetic energy (kBT) of TELP in mitochondria. The local pmf is now calculated to be in a range from 300 to 340 mV while the classic pmf (which underestimates the total pmf) is in a range from 60 to 210 mV in relation to a range of membrane potentials from 50 to 200 mV. Depending on TELP concentrations in mitochondria, this thermotrophic function raises pmf signifcantly by a factor of 2.6 to sixfold over the classic pmf. Therefore, mitochondria are capable of efectively utilizing the environmental heat energy with TELP for the synthesis of ATP, i.e., it can lock heat energy into the chemical form of energy for cellular functions. In the past, there was a common belief that the living organisms on Earth could only utilize light energy and/ or chemical energy, but not the environmental heat energy. Consequently, the life on Earth has been classifed as two types based on their sources of energy: phototrophs and chemotrophs.
    [Show full text]
  • BBA - Bioenergetics 1860 (2019) 433–438
    BBA - Bioenergetics 1860 (2019) 433–438 Contents lists available at ScienceDirect BBA - Bioenergetics journal homepage: www.elsevier.com/locate/bbabio Review The mechanism of cyclic electron flow T ⁎ W.J. Nawrockia,b, , B. Bailleula, D. Picotc, P. Cardolb, F. Rappaporta,1, F.-A. Wollmana, P. Joliota a Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France b Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium c Institut de Biologie Physico-Chimique, UMR 7099 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France ARTICLE INFO ABSTRACT Keywords: Apart from the canonical light-driven linear electron flow (LEF) from water to CO2, numerous regulatory and Photosynthesis alternative electron transfer pathways exist in chloroplasts. One of them is the cyclic electron flow around Biophysics Photosystem I (CEF), contributing to photoprotection of both Photosystem I and II (PSI, PSII) and supplying extra Plastoquinone ATP to fix atmospheric carbon. Nonetheless, CEF remains an enigma in the field of functional photosynthesis as Cytochrome b f 6 we lack understanding of its pathway. Here, we address the discrepancies between functional and genetic/ Photosystem I biochemical data in the literature and formulate novel hypotheses about the pathway and regulation of CEF Cyclic electron flow based on recent structural and kinetic information. 1. Linear and cyclic electron flow kinetic and methodological standpoint in the light of our report that PGRL1 is not directly transferring electrons from Fd to PQ during CEF Photosynthesis consists of a photoinduced linear electron flow [1].
    [Show full text]
  • Chemiosmosis - the Mechanism of ATP Synthesis in Chloroplasts
    Chemiosmosis - The Mechanism of ATP Synthesis in Chloroplasts The thylakoid membrane is composed of a phospholipid bilayer (color phospholipids "B" light blue) and photosystem I and photosystem II. Although they both work simultaneously, it is best to look at them one at a time, starting with photosystem II. The first and most important event in either system is the capturing of light energy (color "E" orange) by the pigments associated with each photosystem. Color the pigments of Photosystem II (P2) dark green and the pigments of Photosystem I (P1) light green. Pigment 680 (color dark green) is associated with Photosystem II, and Pigment 700 (color light green) is associated with Photosystem I. When a photon of light strikes the reaction center of Photosystem II, it excites an electron. Two water molecules bind to an enzyme that splits water into hydrogen ions (protons) and releases an oxygen atom. Color the protons (H+) yellow and the oxygen atoms (O2) red. This process is called PHOTOLYSIS and is illustrated by the arrows labeled "L", which you should color pink. Two electrons are released in this process, and these electrons can be traced through photosystem II and photosystem I. Color the electrons (e) grey. Two oxygen atoms will join together to create an oxygen molecule which is released from the plant as a byproduct of the entire reaction. The primary electron acceptor for the light-energized electrons leaving photosystem II is plastoquinone (color PQ purple). The reduced plastoquinone passes the excited electrons to a proton pump embedded in the membrane called the b6-f complex (color dark blue).
    [Show full text]