Methylmalonic Methylmalonic Aciduria
Total Page:16
File Type:pdf, Size:1020Kb
12/27/2008 METHYLMALONIC ACIDURIA Marc E. Tischler, PhD; University of Arizona METHYLMALONIC ACIDURIA •methylmalonyl-coenzyme A (methylmalonyl-CoA) is formed during the breakdown of some amino acids (i.e., isoleucine, valine, methionine, threonine) and fatty acids that contain an odd number of carbons (small fraction of total) (Figure 1) •methylmalonyl-CoA is further metabolized: o methylmalonyl-CoA mutase produces succinyl-CoA and requires a modified form of vitamin B12 (adenosyl-B12) o succinyl-CoA enters the citric acid cycle whose function is primarily to produce usable energy in the cell • deficiency of methylmalonyl-CoA mutase prevents the metabolism of methylmalonyl- CoA leading to excessive formation of methylmalonic acid o excessive methylmalonic acid is excreted in the urine causing methylmalonic aciduria o potentially life-threatening because it creates an acidic condition (acidosis) •treatment: o restricting intake of the 4 amino acids o neutralizing the acidosis o providing vitamin B12 to potentially boost the activity of methylmalonyl-CoA mutase 1 12/27/2008 NORMAL DISEASE Methionine, Isoleucine, Methionine, Isoleucine, Valine, Threonine, Valine, Threonine, Odd-chain fatty acids Odd-chain fatty acids Many various enzymes Propionyl-CoA Propionyl-CoA Propypionyl-CoA carboxylase Methylmalonyl-CoA Methylmalonyl-CoA Methylmalonyl- +adenosyl-B12 CoA mutase Succinyl-CoA Succinyl-CoAX Enzyme names for Citric Methylmalonic acid Usable indicated arrow Acid acidosis Cycle energy Figure 1. Metabolism of 4 amino acids and odd-chain fatty acids all proceed via methylmalonyl-CoA. Methylmalonyl- CoA is metabolized to succinyl-CoA that enters the citric acid cycle, which produces usable energy for the cell. In methylmalonic aciduria, methylmalonyl-CoA mutase is deficient (X) so that methylmalonyl-CoA accumulates. Methylmalonyl-CoA is instead converted to methylmalonic acid that causes acidosis, a life-threatening condition. Low activity of methylmalonyl-CoA mutase can, in rare instances, be due to decreased formation of adenosyl-B12, a derivative of vitamin B12, or to poor interaction of adenosyl-B12 with the mutase enzyme. Hence providing excessive amounts of vitamin B12 may have some benefits in treatment. 2.