The Faraday Institution / Fast Start Projects 2018
THE FARADAY INSTITUTION / FAST START PROJECTS 2018 EXTENDING Materials Cloud BATTERY Tests BMS Synthesis LIFE Crack (GU, CAM, UCL) ing loss O 2 Magnetometry (CAM) Led by the University of Cambridge with nine other university and 10 industry Dissolution Li plating . Corrosion Raman partners, this project will omp (LIV, CAM) SEI Dec examine how environmental u d d - m/z and internal battery stresses XPS (MAN, NU) e XAS (MAN, ICL) Neutrons DEMS (SOT) (such as high temperatures, XRD (GU, UCL) SIMS (STR, GU) (ICL, NU) charging and discharging Muon SPM SEM (WMG) NMR (CAM) (ICL, NU, GU) (NU, UCL) TEM (CAM, LIV) EPR (MAN) rates) damage electric vehicle (EV) batteries ABOVE: The many possible causes of performance degradation in lithium ion batteries and the comprehensive suite of techniques being used to unravel their mechanisms. over time. are not present in ‘normal’ operating failure, and accelerate the development of Results will include the optimization of conditions. A key goal for the automotive new battery chemistries through the battery materials and cells to extend industry is to better understand the holistic and coordinated efforts of the battery life (and hence EV range), reduce causes and mechanisms of degradation to research. An ability to fully understand the battery costs, and enhance battery safety. enable improved control and prediction of causes of low lifetime in lithium ion With Cambridge, university partners the state of health of battery systems. batteries will place the UK at the forefront include University of Glasgow, University of the next generation of battery electric College London, Newcastle University, Degradation mechanisms can occur on vehicle technology.
[Show full text]