Query Rewriting for Existential Rules with Compiled Preorder

Total Page:16

File Type:pdf, Size:1020Kb

Query Rewriting for Existential Rules with Compiled Preorder Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) Query Rewriting for Existential Rules with Compiled Preorder Melanie´ Konig,¨ Michel Leclere,` Marie-Laure Mugnier University of Montpellier, Inria, CNRS Montpellier, France Abstract DLs by allowing for non-tree structures as well as unbounded predicate arity. We consider here the basic database queries, We address the issue of Ontology-Based Query An- i.e., conjunctive queries (CQs). swering (OBQA), which seeks to exploit knowl- edge expressed in ontologies when querying data. There are two main approaches to query answering in pres- Ontologies are represented in the framework of ex- ence of existential rules and Horn DLs. The first approach is istential rules (aka Datalog±). A commonly used related to forward chaining: it triggers the rules to build a fi- technique consists in rewriting queries into unions nite representation of inferred data such that the answers can of conjunctive queries (UCQs). However, the ob- be computed by evaluating the query against this representa- tained queries can be prohibitively large in prac- tion, e.g., [Cal`ı et al., 2008; Thomazo et al., 2012]. The sec- tice. A well-known source of combinatorial ex- ond approach, initiated by DL-Lite [Calvanese et al., 2005], plosion are very simple rules, typically expressing is related to backward chaining: it rewrites the query using taxonomies and relation signatures. We propose the rules such that the answers can be computed by evaluat- a rewriting technique, which consists in compil- ing the rewritten query against the data, e.g., [Baget et al., ing these rules into a preorder on atoms and em- 2009; Gottlob et al., 2011] on existential rules. Some tech- bedding this preorder into the rewriting process. niques combine both approaches [Kontchakov et al., 2011; This allows to compute compact rewritings that can Thomazo and Rudolph, 2014]. Each technique is applicable be considered as “pivotal” representations, in the to a specific existential rule fragment. sense that they can be evaluated by different kinds In this paper, we focus on the query rewriting approach, of database systems. The provided algorithm com- which has the advantage of being independent from the putes a sound, complete and minimal UCQ rewrit- data. This technique typically outputs a union of conjunctive ing, if one exists. Experiments show that this tech- queries (UCQ), with the aim of benefiting from optimized re- nique leads to substantial gains, in terms of size and lational database management systems (RDBMS). However, runtime, and scales on very large ontologies. We despite the good theoretical data complexity, first experiments also compare to other tools for OBQA with existen- exhibited a serious problem related to the size of the rewrit- tial rules and related lightweight description logics. ten query, e.g., [Rosati and Almatelli, 2010]. Indeed, the out- put query can be exponentially larger than the initial query, even with very simple ontologies, and even if the output is 1 Introduction extended to arbitrary first-order queries [Kikot et al., 2011; We address the issue of Ontology-Based Query Answering 2012]. This led to a significant amount of work on rewrit- (OBQA), which seeks to exploit knowledge expressed in on- ing into more compact queries, which may remain first- tologies when querying data. We consider the novel frame- order queries (hence expressible in SQL) or go beyond them work of existential rules, also called Datalog± [Baget et al., (like Datalog programs, e.g., [Gottlob and Schwentick, 2012; 2011; Cal`ı et al., 2012; Krotzsch¨ and Rudolph, 2011]. Exis- Stefanoni et al., 2012]). Nowadays, mature systems have tential rules are an exstension of function-free positive con- emerged for OWL 2 QL [Rodriguez-Muro et al., 2013; junctive rules that allows for existentially quantified variables Civili et al., 2013], as well as prototypes for the EL family in rule heads. These rules are able to assert the existence of and more expressive DLs, e.g., [Eiter et al., 2012]. Exis- unknown entities, a fundamental feature in an open-domain tential rules are more complex to process. Entailment with perspective, where it cannot be assumed that the description general existential rules is even undecidable (e.g., [Beeri and of data is complete. Interestingly, existential rules generalize Vardi, 1981]). However, expressive subclasses ensuring Horn description logics (DLs), in particular lightweight DLs the existence of a UCQ rewriting are known, such as linear used in the context of OBQA, such as DL-Lite [Calvanese rules, which generalize most DL-Lite dialects, the sticky fam- et al., 2005] and EL [Baader, 2003], which form the core of ily, classes satisfying conditions expressed on a graph of rule so-called tractable profiles of the Semantic Web ontological dependencies, and weakly recursive rules [Cal`ı et al., 2009; language OWL 2. They overcome some limitations of these 2012; Baget et al., 2011; Civili and Rosati, 2012]. 3106 A well-known source of combinatorial explosion are some swer to a CQ Q in a fact F is yes if F j= Q; it is well-known very simple rules that typically express taxonomies or rela- that F j= Q iff Q maps to F . tion signatures. These rules are at the core of any ontology. We propose a new technique to tame this source of complex- Definition 1 (Existential rule) An existential rule (or sim- ity. It relies on compiling these rules into a preorder on atoms ply rule hereafter) is a formula R = 8x8y(B[x; y] ! and embedding this preorder into the rewriting process. In- (9z H[y; z])) where B = body(R) and H = head(R) are tituitively, each atom “represents” all its “specializations”. conjunctions of atoms, resp. called the body and the head Hence, the query rewriting process avoids exploring many of R. The frontier of R is the set of variables vars(B) \ CQs and outputs a small UCQ. This UCQ can be seen as a vars(H) = y. The existential variables in R is the set of “pivotal” representation, in the sense that it can be evaluated variables vars(H) n vars(B) = z. by different kinds of systems: it can be passed to a Datalog In the following, we will omit quantifiers in rules as there engine or unfolded into a positive existential query (a UCQ is no ambiguity. E.g. p(x; y) ! p(y; z) denotes the formula or a more compact form of query) to be processed by an 8x8y(p(x; y) ! 9zp(y; z)). RDBMS; it can also be directly processed if data is stored in A knowledge base (KB) K = (F; R) is composed of a main memory and the appropriate homomorphism operation finite set of facts (which can be seen as a single fact) F and a is implemented. finite set of existential rules R. The CQ entailment problem First, we prove that the new rewriting operator is sound is the following: given a KB K = (F; R) and a CQ Q, does and complete, and provide an algorithm that, given any CQ F; R j= Q hold? This problem is known to be undecidable and any set of existential rules, effectively outputs a mini- in the general case [Beeri and Vardi, 1981]. It can be solved mal, sound and complete UCQ-rewriting, if one exists (which by computing a sound and complete rewritten query Q from may not be the case due to the indecidability of the prob- Q and R, provided that such a finite Q exists, then asking if lem). Since the computation of the preorder is independent F j= Q. Here, the target query Q is a union of CQs (UCQ), from any query, we can divide this algorithm into a compila- that we see as a set of CQs, called a rewriting set of Q. tion step performed offline, and a query rewriting step, which takes the preorder as input. Second, we report experiments, Definition 2 [Sound and Complete (rewriting) set of CQs] which show that this optimization leads to substantial gains, Let R be a set of existential rules, Q be a CQ, and Q be a in terms of size of the output and query rewriting runtime, set of CQs. Q is said to be sound w.r.t. Q and R if for any and is able to scale on very large ontologies. In the case when fact F , for all Qi 2 Q, if Qi maps to F then R;F j= Q. the desired output is a “regular” UCQ, it remains faster for Reciprocally, Q is said to be complete w.r.t. Q and R if for our rewriting tool to compute a pivotal UCQ and to unfold it, any fact F , if R;F j= Q then there is Qi 2 Q such that Qi than to directly compute a regular UCQ. Moreover, our pro- maps to F . totype behaves well compared to other UCQ-rewriting tools A set of rules R for which any query Q has a finite sound tailored for DL-Lite ontologies, even if it does not exploit the and complete set of rewritings (in other words, Q is rewritable specificities of these languages. into a UCQ), is called a finite unification set (fus) [Baget et al., 2009]. Note that restricting a complete rewriting set Q 2 Preliminaries to its most general elements preserves its completeness. A cover of Q is an inclusion-minimal subset Q0 of Q such that An atom is of the form p(t1; : : : ; tk) where p is a predicate each element Q of Q is more specific than an element Q0 of with arity k, and the ti are terms, i.e., variables or constants Q0 (i.e., in database terms: Q is contained in Q0).
Recommended publications
  • Arxiv:1804.04307V1 [Math.RA] 12 Apr 2018 Prtr.A Xml Fsc Lersi H Di the Di Is Algebras of Such of Example an Operators
    FREE OPERATED MONOIDS AND REWRITING SYSTEMS JIN ZHANG AND XING GAO ∗ Abstract. The construction of bases for quotients is an important problem. In this paper, applying the method of rewriting systems, we give a unified approach to construct sections—an alternative name for bases in semigroup theory—for quotients of free operated monoids. As applications, we capture sections of free ∗-monoids and free groups, respectively. Contents 1. Introduction 1 2. Rewrting systems and sections 2 2.1. Operated monoids and operated congruences 2 2.2. Relationshipbetweenrewritingsystemsandsections 6 3. Applications 8 3.1. Free ∗-monoids 9 3.2. Free groups 12 References 16 1. Introduction In 1960, A.G. Kurosh [23] first introduced the concept of algebras with one or more linear operators. An example of such algebras is the differential algebra led by the algebraic abstraction of differential operator in analysis. Differential algebra is from a purely algebraic viewpoint to study differentiation and nonlinear differential equations without using an underlying topology, and has been largely successful in many crucial areas, such as uncoupling of nonlinear systems, classification of singular components, and detection of hidden equations [22, 28]. Another im- portant example of such algebras is the Rota-Baxter algebra (first called Baxter algebra) which is the algebraic abstraction of integral operator in analysis [17]. Rota-Baxter algebra, originated from probability study [5], is related beautifully to the classical Yang-Baxter equation, as well as to operads, to combinatorics and, through the Hopf algebra framework of Connes and Kreimer, to the renormalization of quantum field theory [1, 3, 4, 11, 12, 19].
    [Show full text]
  • Lectures on Algebraic Rewriting
    Lectures on Algebraic Rewriting Philippe Malbos Institut Camille Jordan Université Claude Bernard Lyon 1 - December 2019 - PHILIPPE MALBOS Univ Lyon, Université Claude Bernard Lyon 1 [email protected] CNRS UMR 5208, Institut Camille Jordan 43 blvd. du 11 novembre 1918 F-69622 Villeurbanne cedex, France — December 6, 2019 - 17:47 — Contents 1 Abstract Rewriting 1 1.1 Abstract Rewriting Systems . .2 1.2 Confluence . .4 1.3 Normalisation . .6 1.4 From local to global confluence . 10 2 String Rewriting 13 2.1 Preliminaries: one and two-dimensional categories . 13 2.2 String rewriting systems . 21 2.3 The word problem . 25 2.4 Branchings . 26 2.5 Completion . 30 2.6 Existence of finite convergent presentations . 32 3 Coherent presentations and syzygies 35 3.1 Introduction . 35 3.2 Categorical preliminaries . 37 3.3 Coherent presentation of categories . 40 3.4 Finite derivation type . 42 3.5 Coherence from convergence . 44 4 Two-dimensional homological syzygies 51 4.1 Preliminaries on modules . 51 4.2 Monoids of finite homological type . 55 4.3 Squier’s homological theorem . 61 4.4 Homology of monoids with integral coefficients . 63 4.5 Historical notes . 65 iii CONTENTS 5 Linear rewriting 69 5.1 Linear 2-polygraphs . 70 5.2 Linear rewriting steps . 77 5.3 Termination for linear 2-polygraphs . 79 5.4 Monomial orders . 80 5.5 Confluence and convergence . 82 5.6 The Critical Branchings Theorem . 85 5.7 Coherent presentations of algebras . 90 6 Paradigms of linear rewriting 95 6.1 Composition Lemma . 96 6.2 Reduction operators .
    [Show full text]
  • Thue Systems As Rewriting Systems~
    J. Symbolic Computation (1987) 3, 39-68 Thue Systems as Rewriting Systems~ RONALD V. BOOK Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106, USA This paper is a survey of recent results on Thue systems, where the systems are viewed as rewriting systems on strings over a finite alphabet. The emphasis is on Thue systems with the Chureh-Rosser property, where the notion of reduction is based on length-decreasing rewriting rules. The main effort is expended in outlining the properties of such systems, paying close attention to the issue of the possible decidability of properties and to the issue of the computational complexity of decidable properties. Since Thue systems may also be considered as presentations of monoids, the language of monoids (and groups) is used to describe some of these properties. 1. Introduction Replacement systems arise in the study of formula manipulation systems such as theorem provers, program optimisers, and algebraic simplifiers. These replacement systems take such forms as term rewriting systems, tree manipulating systems, graph grammars, etc. The study of abstract data types is another area where such systems are useful. The principal problem in this context is the word problem: given a system and two objects, are the two objects equivalent? From a slightly different viewpoint the problem can be stated as follows: can one of these objects be transformed into the other by means of a finite number of applications of the rewriting rules in the given system? This leads naturally to the question of the decidability of the word problem for a given class of systems.
    [Show full text]
  • Strategy Independent Reduction Lengths in Rewriting and Binary Arithmetic
    Strategy Independent Reduction Lengths in Rewriting and Binary Arithmetic Hans Zantema University of Technology, Eindhoven, The Netherlands Radboud University, Nijmegen, The Netherlands [email protected] In this paper we give a criterion by which one can conclude that every reduction of a basic term to normal form has the same length. As a consequence, the number of steps to reach the normal form is independent of the chosen strategy. In particular this holds for TRSs computing addition and multiplication of natural numbers, both in unary and binary notation. 1 Introduction For many term rewriting systems (TRSs) the number of rewrite steps to reach a normal form strongly depends on the chosen strategy. For instance, in using the standard if-then-else-rules if(true;x;y) ! x if(false;x;y) ! y it is a good strategy to first rewrite the leftmost (boolean) argument of the symbol if until this argument is rewritten to false or true and then apply the corresponding rewrite rule for if. In this way redundant reductions in the third argument are avoided in case the condition rewrites to true, and redundant reduc- tions in the second argument are avoided in case the condition rewrites to false. More general, choosing a good reduction strategy is essential for doing efficient computation by rewriting. Roughly speaking, for erasing rules, that is, some variable in the left-hand side does not appear in the right-hand side, it seems a good strategy to postpone rewriting this possibly erasing argument, as is the case in the above if-then-else example.
    [Show full text]
  • Verifying the Unification Algorithm In
    Verifying the Uni¯cation Algorithm in LCF Lawrence C. Paulson Computer Laboratory Corn Exchange Street Cambridge CB2 3QG England August 1984 Abstract. Manna and Waldinger's theory of substitutions and uni¯ca- tion has been veri¯ed using the Cambridge LCF theorem prover. A proof of the monotonicity of substitution is presented in detail, as an exam- ple of interaction with LCF. Translating the theory into LCF's domain- theoretic logic is largely straightforward. Well-founded induction on a complex ordering is translated into nested structural inductions. Cor- rectness of uni¯cation is expressed using predicates for such properties as idempotence and most-generality. The veri¯cation is presented as a series of lemmas. The LCF proofs are compared with the original ones, and with other approaches. It appears di±cult to ¯nd a logic that is both simple and exible, especially for proving termination. Contents 1 Introduction 2 2 Overview of uni¯cation 2 3 Overview of LCF 4 3.1 The logic PPLAMBDA :::::::::::::::::::::::::: 4 3.2 The meta-language ML :::::::::::::::::::::::::: 5 3.3 Goal-directed proof :::::::::::::::::::::::::::: 6 3.4 Recursive data structures ::::::::::::::::::::::::: 7 4 Di®erences between the formal and informal theories 7 4.1 Logical framework :::::::::::::::::::::::::::: 8 4.2 Data structure for expressions :::::::::::::::::::::: 8 4.3 Sets and substitutions :::::::::::::::::::::::::: 9 4.4 The induction principle :::::::::::::::::::::::::: 10 5 Constructing theories in LCF 10 5.1 Expressions ::::::::::::::::::::::::::::::::
    [Show full text]
  • A “Three-Sentence Proof” of Hansson's Theorem
    Econ Theory Bull (2018) 6:111–114 https://doi.org/10.1007/s40505-017-0127-2 RESEARCH ARTICLE A “three-sentence proof” of Hansson’s theorem Henrik Petri1 Received: 18 July 2017 / Accepted: 28 August 2017 / Published online: 5 September 2017 © The Author(s) 2017. This article is an open access publication Abstract We provide a new proof of Hansson’s theorem: every preorder has a com- plete preorder extending it. The proof boils down to showing that the lexicographic order extends the Pareto order. Keywords Ordering extension theorem · Lexicographic order · Pareto order · Preferences JEL Classification C65 · D01 1 Introduction Two extensively studied binary relations in economics are the Pareto order and the lexicographic order. It is a well-known fact that the latter relation is an ordering exten- sion of the former. For instance, in Petri and Voorneveld (2016), an essential ingredient is Lemma 3.1, which roughly speaking requires the order under consideration to be an extension of the Pareto order. The main message of this short note is that some fundamental order extension theorems can be reduced to this basic fact. An advantage of the approach is that it seems less abstract than conventional proofs and hence may offer a pedagogical advantage in terms of exposition. Mandler (2015) gives an elegant proof of Spzilrajn’s theorem (1930) that stresses the importance of the lexicographic I thank two anonymous referees for helpful comments. Financial support by the Wallander–Hedelius Foundation under Grant P2014-0189:1 is gratefully acknowledged. B Henrik Petri [email protected] 1 Department of Finance, Stockholm School of Economics, Box 6501, 113 83 Stockholm, Sweden 123 112 H.
    [Show full text]
  • Unification: a Multidisciplinary Survey
    Unification: A Multidisciplinary Survey KEVIN KNIGHT Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890 The unification problem and several variants are presented. Various algorithms and data structures are discussed. Research on unification arising in several areas of computer science is surveyed, these areas include theorem proving, logic programming, and natural language processing. Sections of the paper include examples that highlight particular uses of unification and the special problems encountered. Other topics covered are resolution, higher order logic, the occur check, infinite terms, feature structures, equational theories, inheritance, parallel algorithms, generalization, lattices, and other applications of unification. The paper is intended for readers with a general computer science background-no specific knowledge of any of the above topics is assumed. Categories and Subject Descriptors: E.l [Data Structures]: Graphs; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems- Computations on discrete structures, Pattern matching; Ll.3 [Algebraic Manipulation]: Languages and Systems; 1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving; 1.2.7 [Artificial Intelligence]: Natural Language Processing General Terms: Algorithms Additional Key Words and Phrases: Artificial intelligence, computational complexity, equational theories, feature structures, generalization, higher order logic, inheritance, lattices, logic programming, natural language
    [Show full text]
  • Strategies for Linear Rewriting Systems: Link with Parallel Rewriting And
    Strategies for linear rewriting systems: link with parallel rewriting and involutive divisions Cyrille Chenavier∗ Maxime Lucas† Abstract We study rewriting systems whose underlying set of terms is equipped with a vector space structure over a given field. We introduce parallel rewriting relations, which are rewriting relations compatible with the vector space structure, as well as rewriting strategies, which consist in choosing one rewriting step for each reducible basis element of the vector space. Using these notions, we introduce the S-confluence property and show that it implies confluence. We deduce a proof of the diamond lemma, based on strategies. We illustrate our general framework with rewriting systems over rational Weyl algebras, that are vector spaces over a field of rational functions. In particular, we show that involutive divisions induce rewriting strategies over rational Weyl algebras, and using the S-confluence property, we show that involutive sets induce confluent rewriting systems over rational Weyl algebras. Keywords: confluence, parallel rewriting, rewriting strategies, involutive divisions. M.S.C 2010 - Primary: 13N10, 68Q42. Secondary: 12H05, 35A25. Contents 1 Introduction 1 2 Rewriting strategies over vector spaces 4 2.1 Confluence relative to a strategy . .......... 4 2.2 Strategies for traditional rewriting relations . .................. 7 3 Rewriting strategies over rational Weyl algebras 10 3.1 Rewriting systems over rational Weyl algebras . ............... 10 3.2 Involutive divisions and strategies . .............. 12 arXiv:2005.05764v2 [cs.LO] 7 Jul 2020 4 Conclusion and perspectives 15 1 Introduction Rewriting systems are computational models given by a set of syntactic expressions and transformation rules used to simplify expressions into equivalent ones.
    [Show full text]
  • Bijective Link Between Chapoton's New Intervals and Bipartite Planar Maps
    Bijective link between Chapoton’s new intervals and bipartite planar maps Wenjie Fang* LIGM, Univ. Gustave Eiffel, CNRS, ESIEE Paris F-77454 Marne-la-Vallée, France June 18, 2021 Abstract In 2006, Chapoton defined a class of Tamari intervals called “new intervals” in his enumeration of Tamari intervals, and he found that these new intervals are equi- enumerated with bipartite planar maps. We present here a direct bijection between these two classes of objects using a new object called “degree tree”. Our bijection also gives an intuitive proof of an unpublished equi-distribution result of some statistics on new intervals given by Chapoton and Fusy. 1 Introduction On classical Catalan objects, such as Dyck paths and binary trees, we can define the famous Tamari lattice, first proposed by Dov Tamari [Tam62]. This partial order was later found woven into the fabric of other more sophisticated objects. A no- table example is diagonal coinvariant spaces [BPR12, BCP], which have led to several generalizations of the Tamari lattice [BPR12, PRV17], and also incited the interest in intervals in such Tamari-like lattices. Recently, there is a surge of interest in the enu- arXiv:2001.04723v2 [math.CO] 16 Jun 2021 meration [Cha06, BMFPR11, CP15, FPR17] and the structure [BB09, Fan17, Cha18] of different families of Tamari-like intervals. In particular, several bijective rela- tions were found between various families of Tamari-like intervals and planar maps [BB09, FPR17, Fan18]. The current work is a natural extension of this line of research. In [Cha06], other than counting Tamari intervals, Chapoton also introduced a subclass of Tamari intervals called new intervals, which are irreducible elements in a grafting construction of intervals.
    [Show full text]
  • Rewriting Via Coinserters
    Nordic Journal of Computing 10(2003), 290–312. REWRITING VIA COINSERTERS NEIL GHANI University of Leicester, Department of Mathematics and Computer Science University Road, Leicester LE1 7RH, United Kingdom [email protected] CHRISTOPH LUTH¨ Universitat¨ Bremen, FB 3 — Mathematik und Informatik P.O. Box 330 440, D-28334 Bremen, Germany [email protected] Abstract. This paper introduces a semantics for rewriting that is independent of the data being rewritten and which, nevertheless, models key concepts such as substitution which are central to rewriting algorithms. We demonstrate the naturalness of this construction by showing how it mirrors the usual treatment of algebraic theories as coequalizers of monads. We also demonstrate its naturalness by showing how it captures several canonical forms of rewriting. ACM CCS Categories and Subject Descriptors: F.4.m [Mathematical Logic and Formal Languages]: Miscellaneous – rewrite systems, term rewriting systems; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic – lambda calculus and related systems Key words: rewriting, monads, computation, category theory 1. Introduction Rewrite systems offer a flexible and general notion of computation that has ap- peared in various guises over the last hundred years. The first rewrite systems were used to study the word problem in group theory at the start of the twentieth century [Epstein 1992], and were subsequently further developed in the 1930s in the study of the λ-calculus and combinatory logic [Church 1940]. In the 1950s, Grobner¨ ba- sis were developed to solve the ideal membership problem for polynomials [Buch- berger and Winkler 1998]. In the 1970s, starting with Knuth-Bendix completion [Knuth and Bendix 1970], term rewriting systems (TRSs) have played a prominent roleˆ in the design and implementation of logical and functional programming lan- guages, the theory of abstract data types, and automated theorem proving [Baader and Nipkow 1998].
    [Show full text]
  • Finite Complete Rewriting Systems for Regular Semigroups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 412 (2011) 654–661 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Finite complete rewriting systems for regular semigroups R. Gray a,∗, A. Malheiro a,b a Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal b Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal article info a b s t r a c t Article history: It is proved that, given a (von Neumann) regular semigroup with finitely many left and right Received 11 May 2010 ideals, if every maximal subgroup is presentable by a finite complete rewriting system, then Received in revised form 4 October 2010 so is the semigroup. To achieve this, the following two results are proved: the property Accepted 19 October 2010 of being defined by a finite complete rewriting system is preserved when taking an ideal Communicated by Z. Esik extension by a semigroup defined by a finite complete rewriting system; a completely 0- simple semigroup with finitely many left and right ideals admits a presentation by a finite Keywords: complete rewriting system provided all of its maximal subgroups do. Rewriting systems Finitely presented groups and semigroups ' 2010 Elsevier B.V. All rights reserved. Finite complete rewriting systems Regular semigroups Ideal extensions Completely 0-simple semigroups 1. Introduction This paper is designed to answer a problem posed in [16, Remark and Open Problem 4.5].
    [Show full text]
  • Lecture 9: Recurrence Relations
    Lecture 9: Recurrence Relations Matthew Fricke Definition Examples Guess and Check Lecture 9: Recurrence Relations Binary Search Characteristic Equation Matthew Fricke Method The Fibonacci Sequence Golden Ratio July 15, 2013 Gambler's Ruin Lecture 9: Recurrence Relations This Lecture Matthew Fricke Definition 1 Definition Examples Guess and 2 Examples Check Binary Search 3 Guess and Check Characteristic Equation Method 4 Binary Search The Fibonacci Sequence Golden Ratio 5 Characteristic Equation Method Gambler's Ruin 6 The Fibonacci Sequence 7 Golden Ratio 8 Gambler's Ruin • Recurrence relations are closely tied to differential equations because they are both self referential. • A differential equation relates a function to its own derivative. • The discrete version of a differential equation is a difference equation. • Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation. • Some of the techniques for solving recurrence relations are almost the same as those used to solve differential equations. Lecture 9: Recurrence Relations What are Recurrence Relations? Matthew Fricke • A recurrence relation is an equation that defines a value in Definition a sequence using previous values in the sequence. Examples Guess and Check Binary Search Characteristic Equation Method The Fibonacci Sequence Golden Ratio Gambler's Ruin • A differential equation relates a function to its own derivative. • The discrete version of a differential equation is a difference equation. • Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation. • Some of the techniques for solving recurrence relations are almost the same as those used to solve differential equations.
    [Show full text]