Synthesis of (+)-Lineariifolianone and Related Cyclopropenone- Containing Sesquiterpenoids Keith P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Preparation of Some Organolithium Compounds from Lithium and RX Compounds Katashi Oita Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1955 Direct preparation of some organolithium compounds from lithium and RX compounds Katashi Oita Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Oita, Katashi, "Direct preparation of some organolithium compounds from lithium and RX compounds " (1955). Retrospective Theses and Dissertations. 14262. https://lib.dr.iastate.edu/rtd/14262 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. -
The Role of Norrish Type-I Chemistry in Photoactive Drugs: an Ab Initio Study of a Cyclopropenone-Enediyne Drug Precursor
Leger, S. J., Marchetti, B., Ashfold, M. N. R., & Karsili, T. N. V. (2020). The Role of Norrish Type-I Chemistry in Photoactive Drugs: An ab initio Study of a Cyclopropenone-Enediyne Drug Precursor. Frontiers in Chemistry, 8, [596590]. https://doi.org/10.3389/fchem.2020.596590 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.3389/fchem.2020.596590 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Fromtiers Media at https://doi.org/10.3389/fchem.2020.596590. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ORIGINAL RESEARCH published: 22 December 2020 doi: 10.3389/fchem.2020.596590 The Role of Norrish Type-I Chemistry in Photoactive Drugs: An ab initio Study of a Cyclopropenone-Enediyne Drug Precursor Spencer J. Léger 1,2, Barbara Marchetti 1, Michael N. R. Ashfold 3 and Tolga N. V. Karsili 1* 1 Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States, 2 Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, United States, 3 School of Chemistry, University of Bristol, Bristol, United Kingdom We present a contemporary mechanistic description of the light-driven conversion of cyclopropenone containing enediyne (CPE) precusors to ring-opened species amenable to further Bergman cyclization and formation of stable biradical species that have been proposed for use in light-induced cancer treatment. -
Optimizing the Least Nucleophilic Anion. a New, Strong Methyl+ Reagent Daniel Stasko and Christopher A
Published on Web 01/25/2002 Optimizing the Least Nucleophilic Anion. A New, Strong Methyl+ Reagent Daniel Stasko and Christopher A. Reed* Department of Chemistry, UniVersity of California, RiVerside, California 92521-0304 Received August 3, 2001 The ideal weakly coordinating counterion for reactive cations would be the least nucleophilic, least basic, most inert anion available. It should also be inexpensive, have useful spectroscopic handles, and confer good solubility and crystallizing properties on - its salts. Triflate anion, CF3SO3 , has served chemistry well in this regard but larger size, absence of lone pairs, and extreme chemical inertness have recently made carboranes1 or fluorinated tetraphe- nylborates the preferred choice for many applications.2 These anions have led to the solution of the silylium ion problem,3 enhanced Lewis acid catalysis by Li+ ion,4-6 new “strong-but-gentle” superacids,7 commercially viable olefin polymerization catalysts,8 new possibilities for electrolytes9,10 and ionic liquids,11 and the •+ 7 + 12 isolation of new reactive cations such as C60 , Bu3Sn , Cu- + 13 (CO)4 , etc. Figure 1. The 1-H-2,3,4,5,6-pentamethyl-7,8,9,10,11,12-hexahalo-CB11 - ) The perfluorinated tetraphenylborate anion is the preferred choice carborane anions, 1-H-CB11Me5X6 (X Cl, Br, I), used in this work. for price and solubility reasons but its salts frequently form liquid 29 Table 1. Selected Si Chemical Shifts (ppm) for i-Pr3SiY clathrates and fail to crystallize. The boron-phenyl bond is rather 29 easily cleaved by strong Brønsted14 or Lewis15 acids. Halogenated compd Si conditions carborane anions are much more inert than tetraphenylborates, their i-Pr3Si(1-H-CB11H5Br6) 100 C6D6 salts crystallize well, but they are more expensive and their salts i-Pr3Si(1-H-CB11H5Cl6) 103 C6D6 i-Pr Si(F -BPh )a 108 solid state less soluble. -
United States Patent (19) 11 Patent Number: 5,945,382 Cantegrill Et Al
US005.945382A United States Patent (19) 11 Patent Number: 5,945,382 Cantegrill et al. (45) Date of Patent: *Aug. 31, 1999 54 FUNGICIDAL ARYLPYRAZOLES 2300173 12/1990 Japan. 2224208 5/1990 United Kingdom. 75 Inventors: Richard Cantegril, Lyons; Denis Croisat, Paris; Philippe Desbordes, OTHER PUBLICATIONS Lyons, Francois Guigues, English translation of JP 2-300173, 1990. Rillieux-la-Pape; Jacques Mortier, La English translation of JP 59–53468, 1984. Bouéxier; Raymond Peignier, Caluire; English translation of JP 3-93774, 1991. Jean Pierre Vors, Lyons, all of France Miura et al., (CA 1.14:164226), 1991. Miura et al., (CA 115:92260), 1991. 73 Assignee: Rhone-Poulenc Agrochimie, Lyons, Chemical Abstracts, vol. 108, No. 23, 1986, abstract No. France 204577b. CAS Registry Handbook, No. section, RN=114913-44-9, * Notice: This patent is subject to a terminal dis 114486-01-0, 99067-15-9, 113140-19-5, 73227-97-1, claimer. 27069-17-6, 18099-21–3, 17978-27-7, 1988. 21 Appl. No.: 08/325,283 Hattori et al., CA 68:68981 (1968), Registry No. 17978–25–5, 17978-26-6, 17978-27-7 and 18099–21-3. 22 PCT Filed: Apr. 26, 1993 Hattori et al., CA 68:68982 (1968), Registry No. 17978-28-8. 86 PCT No.: PCT/FR93/00403 Janssen et al., CA 78: 159514 (1973), Registry No. S371 Date: Dec. 22, 1994 38858-97-8 and 38859-02-8. Chang et al., CA 92:146667 (1980), Registry No. S 102(e) Date: Dec. 22, 1994 73227 91-1. Berenyi et al., CA 94:156963 (1981), Registry No. -
ESSEE in Which R1 and R2 Are the Same Or Different And
USOO5272153A United States Patent (19) 11 Patent Number: 5,272,153 Mandell et al. 45 Date of Patent: Dec. 21, 1993 (54)54 OFMETH E. NHIBITINSi6. CTVTY OTHER PUBLICATIONS Avido et al., Angiology 35, 407 (1984). 75 Inventors: St. Mel ES Suguira et al., Japanese Journal of Anesthesiology 32, va.8 William,Wan, CharlotteSVlie, Novici, Lebanon, O 435-41,35-41, with English translationtranslation. N.J. (List continued on next page.) 73) Assignees: Hoechst-Roussel Pharmaceuticals, Primary Examiner-Nathan M. Nutter Inc., Somerville, N.J.; University of Attorney, Agent, or Firm-Finnegan, Henderson, Virginia Alumni Patents Foundation, Farabow, Garrett & Dunner Charlottesville, Va. (*) Notice: The portion of the term of this patent 57) ABSTRACT E. to Jun 15, 2008 has been A family of compounds effective in inhibiting interleu SC. kin-1 (IL-1) activity, tumor necrosis factor (TNF) activ (21) Appl. No.: 908,929 ity, and the activity of other leukocyte derived cyto s kines is comprised of 7-(oxoalkyl) 1,3-dialkyl xanthines (22 Filed: Jul. 2, 1992 of the formula Related U.S. Application Data R (I) 63 Continuation of Ser. No. 700,522, May 15, 1991, aban- Y N-A-C-CH3 doned, which is a continuation of Ser. No. 622,138, Dec. 5, 1990, Pat. No. 5,096,906, which is a continua- al- 6 tion of Ser. No. 508,535, Apr. 11, 1990, abandoned, O N N which is a continuation of Ser. No. 239,761, Sep. 2, 1988, abandoned, which is a continuation of ser. No. R2 ESSEE selectedin which from R1 and the R2group are consistingthe same orof different straight-chain and are or 51) int. -
Possible Gas-Phase Syntheses for Seven Neutral Molecules Studied Recently with the Green Bank Telescope
A&A 474, 521–527 (2007) Astronomy DOI: 10.1051/0004-6361:20078246 & c ESO 2007 Astrophysics Possible gas-phase syntheses for seven neutral molecules studied recently with the Green Bank Telescope D. Quan1 and E. Herbst2 1 Chemical Physics Program, The Ohio State University, Columbus, Ohio 43210, USA e-mail: [email protected] 2 Departments of Physics, Chemistry and Astronomy, The Ohio State University, Columbus, OH 43210, USA Received 9 July 2007 / Accepted 17 August 2007 ABSTRACT Aims. With the Green Bank telescope (GBT), seven neutral molecules have been newly detected or confirmed towards either the cold interstellar core TMC-1 or the hot core source Sgr B2(N) within the last 1–2 years. Towards TMC-1, the new molecules seen are cyanoallene (CH2CCHCN) and methyl triacetylene (CH3C6H) while methyl cyanoacetylene (CH3CCCN) and methyl cyanodiacety- lene (CH3C5N) were confirmed. Towards Sgr B2(N), the three newly detected molecules are cyclopropenone (c-C3H2O), ketenimine (CH2CNH), and acetamide (CH3CONH2); these are mainly seen in absorption and are primarily located in an envelope around the hot core. In this work, we report a detailed study of the gas-phase chemistry of all seven molecules. Methods. Starting with our updated gas-phase chemical reaction network osu.01.2007, we added formation and depletion reactions to treat the chemistry of each of the seven molecules. Some of these were already in our network but with incomplete chemistry, while most were not in the network at all prior to this work. We assumed the standard physical conditions for TMC-1 and assumed that these also hold for the envelope around Sgr B2(N). -
OMLI041 GHS US English US
OMLI041 - METHYLLITHIUM, 3M in diethoxymethane METHYLLITHIUM, 3M in diethoxymethane Safety Data Sheet OMLI041 Date of issue: 10/04/2017 Revision date: 05/24/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product name : METHYLLITHIUM, 3M in diethoxymethane Product code : OMLI041 Product form : Mixture Physical state : Liquid Formula : CH3Li Synonyms : LITHIUM METHIDE Chemical family : METAL ALKYL 1.2. Recommended use and restrictions on use Recommended use : Chemical intermediate 1.3. Supplier GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids Category 2 H225 Highly flammable liquid and vapor Pyrophoric liquids Category 1 H250 Catches fire spontaneously if exposed to air Substances and mixtures which in contact with water emit flammable H260 In contact with water releases flammable gases which may ignite gases Category 1 spontaneously Skin corrosion/irritation Category 1B H314 Causes severe skin burns and eye damage Serious eye damage/eye irritation Category 1 H318 Causes serious eye damage Specific target organ toxicity (single exposure) Category 3 H335 May cause respiratory irritation Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS US labeling Hazard pictograms (GHS US) : Signal word (GHS US) : Danger Hazard statements (GHS US) : H225 - Highly flammable liquid and vapor H250 - Catches fire spontaneously if exposed to air H260 - In contact with water releases flammable gases which may ignite spontaneously H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H335 - May cause respiratory irritation Precautionary statements (GHS US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection. -
Organic Seminar Abstracts
L I B RA FLY OF THE U N IVERSITY OF 1LLI NOIS Q.54-1 Ii£s 1964/65 ,t.l P Return this book on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. University of Illinois Library OCfcfcsrm L161— O-1096 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi1964651univ s ORGANIC SEMINAR ABSTRACTS 196^-65 Semester I Department of Chemistry and Chemical Engineering University of Illinois ' / SEMINAR TOPICS I Semester I96U-I965 f"/ ( Orientation in Sodium and Potassium Metalations of Aromatic Compounds Earl G. Alley 1 Structure of Cyclopropane Virgil Weiss 9 Vinylidenes and Vinylidenecarbenes Joseph C. Catlin 17 Diazene Intermediates James A. Bonham 25 Perfluoroalkyl and Polyfluoroalkyl Carbanions J. David Angerer 3^ Free Radical Additions to Allenes Raymond Feldt 43 The Structure and Biosynthesis of Quassin Richard A. Larson 52 The Decomposition of Perester Compounds Thomas Sharpe 61 The Reaction of Di-t -Butyl Peroxide with Simple Alkyl, Benzyl and Cyclic Ethers R. L. Keener 70 Rearrangements and Solvolysis in Some Allylic Systems Jack Timberlake 79 Longifolene QQ Michael A. Lintner 00 Hydrogenation ! Homogeneous Catalytic Robert Y. Ning 9° c c Total Synthesis of ( -) -Emetime R. Lambert 1* Paracyclophanes Ping C. Huang 112 Mechanism of the Thermal Rearrangement of Cyclopropane George Su 121 Some Recent Studies of the Photochemistry of Cross -Conjugated Cyclohexadienones Elizabeth McLeister 130 The Hammett Acidity Function R. P. Quirk 139 Homoaromaticity Roger A. -
Silyl Ketone Chemistry. Preparation and Reactions of Silyl Allenol Ethers. Diels-Alder Reactions of Siloxy Vinylallenes Leading to Sesquiterpenes2
J. Am. Chem. SOC.1986, 108, 7791-7800 7791 pyrany1oxy)dodecanoic acid, 1.38 1 g (3.15 mmol) of GPC-CdCIz, 0.854 product mixture was then filtered and concentrated under reduced g (7.0 mmol) of 4-(dimethylamino)pyridine, and 1.648 g (8.0 mmol) of pressure. The residue was dissolved in 5 mL of solvent B and passed dicyclohexylcarbodiimide was suspended in 15 mL of dry dichloro- through a 1.2 X 1.5 cm AG MP-50 cation-exchange column in order to methane and stirred under nitrogen in the dark for 40 h. After removal remove 4-(dimethylamino)pyridine. The filtrate was concentrated under of solvent in vacuo, the residue was dissolved in 50 mL of CH30H/H20 reduced pressure, dissolved in a minimum volume of absolute ethanol, (95/5, v/v) and stirred in the presence of 8.0 g of AG MP-50 (23 OC, and then concentrated again. Chromatographic purification of the res- 2 h) to allow for complete deprotection of the hydroxyl groups (monitored idue on a silica gel column (0.9 X 6 cm), eluting first with solvent A and by thin-layer chromatography)." The resin was then removed by fil- then with solvent C (compound 1 elutes on silica as a single yellow band), tration and the solution concentrated under reduced pressure. The crude afforded, after drying [IO h, 22 OC (0.05 mm)], 0.055 g (90%) of 1 as product (2.75 g). obtained after drying [12 h, 23 OC (0.05 mm)], was a yellow solid: R 0.45 (solvent C); IR (KBr) ucz0 1732, uN(cH3)3 970, then subjected to chromatographic purification by using a 30-g (4 X 4 1050, 1090cm-'; I' H NMR (CDCI,) 6 1.25 (s 28 H, CH2), 1.40-2.05 (m, cm) silica gel column, eluting with solvents A and C, to yield 0.990 g 20 H, lipoic-CH,, CH2CH20,CH2CH,C02), 2.3 (t. -
Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites and Interfaces
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2017 POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES Daniel H. Flagg University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Materials Chemistry Commons, Polymer and Organic Materials Commons, and the Polymer Chemistry Commons Recommended Citation Flagg, Daniel H., "POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES" (2017). Doctoral Dissertations. 1080. https://doi.org/10.7275/10575940.0 https://scholarworks.umass.edu/dissertations_2/1080 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the degree requirements for the degree of DOCTOR OF PHILOSOPHY September 2017 Polymer Science and Engineering © Copyright by Daniel H. Flagg 2017 All Rights Reserved POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Approved as to style and content by: Thomas J. McCarthy, Chair E. Bryan Coughlin, Member John Klier, Member E. Bryan Coughlin, Head, PS&E To John Null ACKNOWLEDGEMENTS There are countless individuals that I need to thank and acknowledge for getting me to where I am today. I could not have done it alone and would be a much different person if it were not for the support of my advisors, friends and family. -
Formation Mechanism of C60 Under Nonequilibrium and Irreversible
This article was downloaded by: [Eiji Osawa] On: 14 May 2012, At: 15:10 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Fullerenes, Nanotubes and Carbon Nanostructures Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lfnn20 Formation Mechanism of C60 under Nonequilibrium and Irreversible Conditions — An Annotation a Eiji Ōsawa a NanoCarbon Research Institute, AREC, Shinshu University, Nagano, Japan Available online: 14 May 2012 To cite this article: Eiji Ōsawa (2012): Formation Mechanism of C60 under Nonequilibrium and Irreversible Conditions — An Annotation, Fullerenes, Nanotubes and Carbon Nanostructures, 20:4-7, 299-309 To link to this article: http://dx.doi.org/10.1080/1536383X.2012.655104 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
Investigation of Au Sams Photoclick Derivatization by PM-IRRAS Wilson Luoa, Sydney M
Investigation of Au SAMs Photoclick Derivatization by PM-IRRAS Wilson Luoa, Sydney M. Leggea, Johnny Luob,c, François Lagugné-Labarthet*a, and Mark S. Wor- kentin*a aDepartment of Chemistry and the Centre for Materials and Biomaterials Research, Western University, 1151 Rich- mond Street, London, ON, N6A 5B7, Canada. bDepartment of Biochemistry, Western University, London, Ontario N6A 5C1, Canada. cLawson Health Research Institute, London, Ontario N6C 2R5, Canada. ABSTRACT: In this work we present a clean one-step process for modifying headgroups of self-assembled monolayers (SAMs) on gold using photo-enabled click chemistry. A thiolated, cyclopropenone-caged strained alkyne precursor was first functionalized onto a flat gold substrate through self-assembly. Exposure of the cyclopropenone SAM to UV-A light initi- ated the efficient photochemical decarbonylation of the cyclopropenone moiety, revealing the strained alkyne capable of undergoing the interfacial strain-promoted alkyne-azide cycloaddition (SPAAC). Irradiated SAMs were derivatized with a series of model azides with varied hydrophobicity to demonstrate the generality of this chemical system for the modification and fine-tuning of the surface chemistry on gold substrates. SAMs were characterized at each step with polarization-mod- ulation infrared reflection-absorption spectroscopy (PM-IRRAS) to confirm successful functionalization and reactivity. Fur- thermore, to showcase the compatibility of this approach with biochemical applications, cyclopropenone SAMs were irra- diated and modified with azide-bearing cell adhesion peptides to promote human fibroblast cell adhesion, then imaged by live cell fluorescence microscopy. Thus, the “photoclick” methodology reported here represents an improved, versatile, catalyst-free protocol that allows for a high degree of control over the modification of material surfaces, with applicability in materials science as well as biochemistry.