Osteotomy.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Osteotomy.Pdf Table of Contents About the Authors 5 Introduction 7 Basic Knee Anatomy 9 Understanding Lower Limb Malalignment 12 The Basics 12 Primary, Double, and Triple Varus 14 The Influence of Gait (How We Walk) on Forces in the Knee 18 What Happens in the Arthritis Process in the Knee Joint? 20 The Demise of Articular Cartilage 20 Types of Knee Arthritis 21 The Knee Examination 22 History 22 Where Does It Hurt? 22 Range of Knee Motion 23 Knee Ligament Tests 23 Meniscus Tests 25 Knee Joint Crepitus 25 The Patellofemoral Joint 26 Lower Limb Alignment and Gait Analysis 26 Muscle Strength and Function 26 Imaging Studies (X-rays, MRI) 26 Conservative Treatment: What You Should Have Already Tried 28 A Few Comments 28 Mild Arthritis Pain 29 Moderate Arthritis Pain 29 Severe Arthritis Pain 29 Choosing an Orthopaedic Surgeon in the United States 30 High Tibial Osteotomy for Varus (Bowed Leg) Malalignment 31 Indications 31 Contraindications 32 Timing of Knee Ligament Reconstruction if Required 33 Preoperative Planning 34 Choosing Between an Opening Wedge and Closing Wedge Procedure 35 Initial Steps for Both Osteotomy Procedures 36 Opening Wedge Osteotomy 37 Closing Wedge Osteotomy 40 Possible Complications 41 Expected Results 41 Distal Femoral Osteotomy for Valgus (Knock-Knee) Malalignment 42 Indications 42 Contraindications 43 Preoperative Planning 44 How the Operation May Be Done 44 Possible Complications 46 Expected Results 46 Limb Alignment Osteotomy Versus Partial Knee Replacement 46 Common Associated Operative Procedures 47 ACL Reconstruction 47 PCL Reconstruction 48 Posterolateral Reconstruction 49 Articular Cartilage Restoration 51 Meniscus Repair 52 Meniscus Transplantation 53 Preparing for Surgery 53 Getting Your House Ready 53 Food and Medications 55 Practice the Exercises You Will Do After Surgery 56 Mental Preparation 56 The Night Before Surgery 57 The Day of Surgery 57 Recovering From Surgery 59 Prevention of Blood Clots in Your Leg (Deep Venous Thrombosis) 59 Our Postoperative Physical Therapy Program 59 Home Exercises 67 Ankle Pumps 67 Range of Knee Motion 67 Patellar Mobilization 67 Hanging Weights 68 Rolling Stool 68 Wall Slides 68 Quadriceps Isometrics: Full Extension 69 Quadriceps Isometrics: Multi-angle 69 Straight Leg Raise: Hip Flexion 70 Straight Leg Raise: Hip Extension 70 Straight Leg Raise: Hip Abduction 70 Straight Leg Raise: Hip Adduction 70 Straight Leg Raises With Resistance Band 71 Mini-squats 72 Hamstring Curls, Active 73 Knee Extension, Active-Assisted 73 Knee Extension, Active 73 Wall Sits 73 Heel Raises 74 Toe Raises 74 Lateral Step-ups 74 Step-downs, Stable and Unstable Surface 74 Hamstring Stretch 75 Calf Stretch 75 Iliotibial Band Stretch 75 Quadriceps Stretch 76 Health, Fitness Club Exercise Machines 76 Leg Press 76 Hip Abduction/Adduction 77 Multi-Hip 77 Knee Extension 77 Hamstring Curls 78 Upper Body Weight Training 78 Core Training 78 Stationary Bicycle 78 Cross-Country Ski 79 Elliptical 79 Pool Training 79 Water Walking and Other Basic Aquatic Exercises 79 Swimming (Straight Ahead Kicking) 79 Frequently Asked Questions 80 Acronyms and References 81 Appendix 1. Gait Retraining Program for Severe, Painful Knee Hyperextension 86 5 About the Authors Dr. Frank Noyes is an internationally recognized orthopaedic surgeon and researcher who has specialized in the treatment of knee injuries and disorders for nearly 4 decades. He is the founder and chairman of the Cin- cinnati SportsMedicine and Orthopaedic Center and its nonprofit research foundation. Dr. Noyes completed his orthopaedic training at the University of Michigan Medical Center. He then received a 4-year clinical and research appointment as an orthopaedic surgeon in the United States Air Force, was commissioned as a Lieu- tenant Colonel, and began his landmark research into knee ligament injuries, the effects of immobilization, bio- mechanics of ligaments, prevention of ACL injuries in the female athlete, the diagnosis of many knee injuries and problems, and the results of treatment for a variety of knee disorders. Along with Dr. Edward Grood, Dr. Noyes established one of the first biomechanics laboratories in the United States at the University of Cincinnati College of Engineering. The laboratory was subsequently named in his honor as the Noyes Tissue Engineering and Biomechanics Laboratory. Dr. Noyes has won every conceivable award for his clinical and laboratory research from societies such as the American Academy of Orthopaedic Surgeons, the American Orthopaedic Society of Sports Medicine, the Orthopaedic Research and Education Foundation, as well as the University of Cincinnati. He was inducted into the American Orthopaedic Society for Sports Medicine’s Hall of Fame in 2008. Dr. Noyes has been selected by his peers as one of the Best Doctors in America every year since 1992. Dr. Noyes has published over 260 clinical and scientific research studies and textbook chapters. These publica- tions detailed surgical techniques and clinical outcomes on many different types of knee injuries and disorders. He edited a textbook entitled, “Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes” which was written for orthopaedic surgeons, physical therapists, and other sports medicine health care professionals. Dr. Noyes is also a co-editor of “ACL Injuries in the Female Athlete. Causes, Impacts, and Conditioning Programs”, a textbook written for sports medicine health care professionals, coaches, and trainers involved with female athletes. Sue Barber-Westin has directed clinical research studies for Dr. Noyes’ research Foundation for nearly 3 de- cades. In the mid 1980’s, she authored one of the first studies that measured problems during single-leg hop- ping tests in patients with ACL injuries, “Quantitative Assessment of Functional Limitations in Normal and Anterior Cruciate Ligament-Deficient Knees.” She has co-authored 140 articles in medical journals and text- books, focusing on the clinical outcome of various knee operative procedures, the methods used to determine the results of clinical investigations, differences in neuromuscular indices between male and female athletes, ef- fects of neuromuscular training in female athletes, and prevention of ACL injuries in female athletes. Sue is the associate editor of “Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes” and is the co-editor for “ACL Injuries in the Female Athlete. Causes, Impacts, and Conditioning Programs”. Sue has personally undergone 4 knee operations and played competitive junior and collegiate tennis. In 2004, Sue and Dr. Noyes were members of the clinical research team that won the Clinical Research Award from the Orthopaedic Research and Education Foundation. They are frequently invited to speak at national and international conferences and review articles for orthopaedic and sports medicine journals. Noyes and Barber-Westin have written several other eBooks for patients: 1. ACL Injury: Everything You Need to Know to Make the Right Treatment Decision 2. ACL Injury Rehabilitation: Everything You Need to Know to Restore Knee Function and Return to Activity 6 3. Knee Meniscus (Cartilage) Tears: Everything You Need to Know to Make the Right Treatment Decision 4. Patellar (Kneecap) Pain and Problems: Everything You Need to Know to Make the Right Treatment Deci- sion 5. Operations for Knee Arthritis: What To Do When All Else Has Failed To Stop Your Knee Pain 6. Knee Arthrofibrosis: Everything You Need to Know to Recognize, Treat, and Prevent Loss of Knee Motion After Injury or Surgery 7. Partial Knee Replacement: Everything You Need to Know to Make the Right Treatment Decision 8. PCL and Posterolateral Knee Ligament Injuries: Everything You Need to Know to Make the Right Treatment Decision 9. The Unstable Patella (Kneecap): Everything You Need to Know to Make the Right Treatment Decision 7 Introduction Lower limb malalignment, often referred to as bowed legs or knock-knees, can cause knee pain and limitations, especially as we grow older. In adults, a bow-legged or knock-kneed position indicates a malalignment of the lower extremity - the entire leg from the hip to the ankle. The medical terms used to describe these conditions are varus for bowed legs and valgus for knock-knees. Both varus and valgus malalignment are frequently seen in very young children and are usually corrected naturally with growth and physical maturation. In adults, lower limb malalignment may occur to one or both legs and be either a congenital disorder or happen as a result of a knee injury. The main problem with lower limb malalignment is the development of osteoarthritis in one area of the knee that causes pain, swelling, and limitations with recreational sports and eventually, with normal daily activities. Varus (bowed leg), the more common malalignment condition, may cause pain in the inner (medial) portion of the knee joint. Knee symptoms may be worsened with obesity or overuse of the knee joint, and can become a serious problem if the medial meniscus (cartilage) tears and requires partial or complete removal (called a meniscectomy). Valgus malalignment (knock-knee) may cause pain in the outer (lateral) area of the knee and can worsen upon removal of the lateral meniscus. Osteoarthritis may occur from varus or valgus malalignment because there is an abnormal amount of stress and pressure placed on just the inner (varus) or outer (valgus) part of the knee joint. A good analogy to this problem is the wearing of a portion of a tire on a car that is out of proper alignment. If the alignment is not fixed, the tire will wear out on one side, shortening its expected lifespan. Fortunately, there are operations that have gained wide acceptance as treatment options for younger active patients who have painful osteoarthritis in one portion of the knee due to varus or valgus malalignment. An operation called an osteotomy may be performed in which bone in either the femur (thigh bone) or tibia (shin bone) is cut and the leg is properly aligned by the surgeon. The operation commonly done for varus malalign- ment is called a high tibial osteotomy (HTO).
Recommended publications
  • Telemedicine Management of Musculoskeletal Issues Nicole T
    Telemedicine Management of Musculoskeletal Issues Nicole T. Yedlinsky, MD, University of Kansas Medical Center, Kansas City, Kansas Rebecca L. Peebles, DO, Ehrling Bergquist Family Medicine Residency Program, Offutt Air Force Base, Nebraska; Uniformed Services University of the Health Sciences, Bethesda, Maryland Telemedicine can provide patients with cost-effective, quality care. The coronavirus disease 2019 pandemic has highlighted the need for alternative methods of delivering health care. Family physi- cians can benefit from using a standardized approach to evaluate and diagnose musculoskeletal issues via telemedicine visits. Previsit planning establishes appropriate use of telemedicine and ensures that the patient and physician have functional telehealth equipment. Specific instructions to patients regard- ing ideal setting, camera angles, body positioning, and attire enhance virtual visits. Physicians can obtain a thorough history and perform a structured musculoskel- etal examination via telemedicine. The use of common household items allows physicians to replicate in-person clinical examination maneuvers. Home care instructions and online rehabilitation resources are available for ini- tial management. Patients should be scheduled for an in-person visit when the diagnosis or management plan is in question. Patients with a possible deformity or neuro- vascular compromise should be referred for urgent evaluation. Follow-up can be done virtually if the patient’s condition is improving as expected. If the condition is worsening or not improving, the patient should have an in-office assessment, with consideration for referral to formal physical therapy or spe- cialty services when appropriate. (Am Fam Physician. 2021;103:online. Copyright © 2021 American Academy of Family Physicians.) Illustration by Jennifer Fairman by Jennifer Illustration Published online January 12, 2021.
    [Show full text]
  • Knee Examination (ACL Tear) (Please Tick)
    Year 4 Formative OSCE (September) 2018 Station 3 Year 4 Formative OSCE (September) 2018 Reading for Station 3 Candidate Instructions Clinical Scenario You are an ED intern at the Gold Coast University Hospital. Alex Jones, 20-years-old, was brought into the hospital by ambulance. Alex presents with knee pain following an injury playing soccer a few hours ago. Alex has already been sent for an X-ray. The registrar has asked you to examine Alex. Task In the first six (6) minutes: • Perform an appropriate physical examination of Alex and explain what you are doing to the registrar as you go. In the last two (2) minutes, you will be given Alex’s X-ray and will be prompted to: • Interpret the radiograph • Provide a provisional diagnosis to the registrar • Provide a management plan to the registrar You do not need to take a history. The examiner will assume the role of the registrar. Year 4 Formative OSCE (September) 2018 Station 3 Simulated Patient Information The candidate has the following scenario and task Clinical Scenario You are an ED intern at the Gold Coast University Hospital. Alex Jones, 20-years-old, was brought into the hospital by ambulance. Alex presents with knee pain following an injury playing soccer a few hours ago. Alex has already been sent for an X-ray. The registrar has asked you to examine Alex. Task In the first six (6) minutes: • Perform an appropriate physical examination of Alex and explain what you are doing to the registrar as you go. In the last two (2) minutes, you will be given Alex’s X-ray and will be prompted to: • Interpret the radiograph • Provide a provisional diagnosis to the registrar • Provide a management plan to the registrar You do not need to take a history.
    [Show full text]
  • Musculoskeletal Clinical Vignettes a Case Based Text
    Leading the world to better health MUSCULOSKELETAL CLINICAL VIGNETTES A CASE BASED TEXT Department of Orthopaedic Surgery, RCSI Department of General Practice, RCSI Department of Rheumatology, Beaumont Hospital O’Byrne J, Downey R, Feeley R, Kelly M, Tiedt L, O’Byrne J, Murphy M, Stuart E, Kearns G. (2019) Musculoskeletal clinical vignettes: a case based text. Dublin, Ireland: RCSI. ISBN: 978-0-9926911-8-9 Image attribution: istock.com/mashuk CC Licence by NC-SA MUSCULOSKELETAL CLINICAL VIGNETTES Incorporating history, examination, investigations and management of commonly presenting musculoskeletal conditions 1131 Department of Orthopaedic Surgery, RCSI Prof. John O'Byrne Department of Orthopaedic Surgery, RCSI Dr. Richie Downey Prof. John O'Byrne Mr. Iain Feeley Dr. Richie Downey Dr. Martin Kelly Mr. Iain Feeley Dr. Lauren Tiedt Dr. Martin Kelly Department of General Practice, RCSI Dr. Lauren Tiedt Dr. Mark Murphy Department of General Practice, RCSI Dr Ellen Stuart Dr. Mark Murphy Department of Rheumatology, Beaumont Hospital Dr Ellen Stuart Dr Grainne Kearns Department of Rheumatology, Beaumont Hospital Dr Grainne Kearns 2 2 Department of Orthopaedic Surgery, RCSI Prof. John O'Byrne Department of Orthopaedic Surgery, RCSI Dr. Richie Downey TABLE OF CONTENTS Prof. John O'Byrne Mr. Iain Feeley Introduction ............................................................. 5 Dr. Richie Downey Dr. Martin Kelly General guidelines for musculoskeletal physical Mr. Iain Feeley examination of all joints .................................................. 6 Dr. Lauren Tiedt Dr. Martin Kelly Upper limb ............................................................. 10 Department of General Practice, RCSI Example of an upper limb joint examination ................. 11 Dr. Lauren Tiedt Shoulder osteoarthritis ................................................. 13 Dr. Mark Murphy Adhesive capsulitis (frozen shoulder) ............................ 16 Department of General Practice, RCSI Dr Ellen Stuart Shoulder rotator cuff pathology ...................................
    [Show full text]
  • Mcmaster Musculoskeletal Clinical Skills Manual 1E
    McMaster Musculoskeletal Clinical Skills Manual Authors Samyuktha Adiga Dr. Raj Carmona, MBBS, FRCPC Illustrator Jenna Rebelo Editors Caitlin Lees Dr. Raj Carmona, MBBS, FRCPC In association with the Medical Education Interest Group Narendra Singh and Jacqueline Ho (co-chairs) FOREWORD AND ACKNOWLEDGEMENTS The McMaster Musculoskeletal Clinical Skills Manual was produced by members of the Medical Education Interest Group (co-chairs Jacqueline Ho and Narendra Singh), and Dr. Raj Carmona, Assistant Professor of Medicine at McMaster University. Samyuktha Adiga and Dr. Carmona wrote the manual. Illustrations were done by Jenna Rebelo. Editing was performed by Caitlin Lees and Dr. Carmona. The Manual, completed in August 2012, is a supplement to the McMaster MSK Examination Video Series created by Dr. Carmona, and closely follows the format and content of these videos. The videos are available on Medportal (McMaster students), and also publicly accessible at RheumTutor.com and fhs.mcmaster.ca/medicine/rheumatology. McMaster Musculoskeletal Clinical Skills Manual S. Adiga, J. Rebelo, C. Lees, R. Carmona McMaster Musculoskeletal Clinical Skills Manual TABLE OF CONTENTS General Guide 1 Hip Examination 3 Knee Examination 6 Ankle and Foot Examination 12 Examination of the Back 15 Shoulder Examination 19 Elbow Examination 24 Hand and Wrist Examination 26 Appendix: Neurological Assessment 29 1 GENERAL GUIDE (Please see videos for detailed demonstration of examinations) Always wash your hands and then introduce yourself to the patient. As with any other exam, ensure adequate exposure while respecting patient's modesty. Remember to assess gait whenever doing an examination of the back or any part of the lower limbs. Inspection follows the format: ● S welling ● E rythema ● A trophy ● D eformities ● S cars, skin changes, etc.
    [Show full text]
  • Knee Examination
    Checklist for Physical Examination of the Knee Muscuoskeletal Block -- Chris McGrew MD, Andrew Ashbaugh DO This handout is for use as a “rough” guide and study aid. Your instructor may perform certain maneuvers differently than depicted here. I acknowledge that this may be frustrating, but please try to be understanding of this inter-examination variability. A. Inspection 1) Standing - alignment, foot structure, hip/pelvis 2) Gait – Observe (is there a limp?) 3) Supine – effusion, erythema, quadriceps muscle (atrophy?) “Var us my pig” B. Palpation 1) Warmth, Crepitus, Effusion 2) Tenderness – medial/lateral joint lines, MCL, LCL, patellar facets, quadriceps insertions, patellar tendon, IT Band, pes anserine bursa Milk test for effusion Start at inferior pole of patella, drop down and move medially and laterally to joint lines. Then condyles and plateuas, Then patellar tendon. For patella check poles and facets. C. Range of Motion --Need to check both hip and knee ROM as hip pathology can refer pain to the knee. 1) Hip ROM: flexion, internal and external rotation 120 degrees Int Rot: Ext Rot: 0 degrees 30-40 40-60 2) Knee flexion and extension (know difference between AROM and PROM) 3) Hamstring flexibility (compare to other side) Popliteal angle test: hip flexed to 90, knee flexed to 90, then examiner passively extends knee till it reaches it resistance. D. Manual Muscle Testing / Neurovascular exam 1) Knee Extension/Flexion (MMT of quadriceps and hamstrings) 2) Distal Neurovascular: pulses, gross sensation, capillary refill. Dorsalis pedis pulse found best in line with the second toe. E. Special Tests 1) Patellar Examination a) Q-angle, be able to visualize varus or valgus b) Patellar compression/grind c) Patellar glide/tilt d) Apprehension sign Patellar compression/grind test (PFPS, chondromalacia patellae) Have patients knee bent at 20-30 degrees, hold their patella in place and have them slowly activate their quadriceps muscles and to stop if it hurts.
    [Show full text]
  • Knee Examination
    Knee Examination Video.(Was done by the department) ​ Objective: To be able to perform examination of the knee and to distinguish and identify an abnormal finding that suggests a pathology. Done By: Fahad Alabdullatif ​ Edited & Revised By: Adel Al Shihri & Moath Baeshen. ​ ​ ​ References: Department handout, Notes(by moath baeshen), Browse’s,433 OSCE Team. ​ Look ❖ Standing: ​ ➢ Expose both lower limbs from mid-thigh down. ➢ Comment on knee alignment while standing (varus/valgus /or neutral) and whither physiological or pathological). ➢ Look for abnormal motion of the knees while walking. ➢ Look for ankle and foot alignment and position. ➢ Gait. ❖ Supine ➢ Alignment ( physiological valgus, abnormal valgus, varus) ➢ Skin changes ➢ Varicose veins ➢ Swelling ➢ Muscle wasting (quadriceps) (Should be measured by a measuring tape guess) ​ ➢ Inspect the back of the knee. (Baker’s cyst) ​ Feel 1. Before touching the patient ask if he has any pain 2. Always compare to the other side ❖ Check and compare temperature ❖ Feel for any lumps or bumps in the soft tissue or bone around the knee – comment if present ➢ Baker's cyst (in popliteal fossa) ❖ Identify bony landmarks (femoral and tibial condyles, tuberosity, proximal fibula, patella and comment if ​ tender) (Best done with the knees flexed. Keep looking at the patient’s face.) (Tenderness over the tibial ​ tuberosity may indicate Osgood–Schlatter disease) ❖ Identify course of collateral ligaments and comment if tender ❖ Identify joint line in flexion of 80 - 90 degrees and comment if tender (Joint line tenderness = meniscus ​ ​ injury) (Identify the quadriceps tendon ​ ​ checking for a gap) ❖ You should know surface anatomy to localize the site of abnormality, in the exam the SP may points to an area that hurts, you should be able to identify it.
    [Show full text]
  • Soldier's Manual and Trainer's Guide
    STP 8-68W13-SM-TG 3 May 2013 SOLDIER’S MANUAL AND TRAINER’S GUIDE MOS 68W HEALTH CARE SPECIALIST SKILL LEVELS 1/2/3 HEADQUARTERS, DEPARTMENT OF THE ARMY DISTRIBUTION RESTRICTION: Distribution authorized to US Government agencies and their contractors only to protect technical and operational information from automatic dissemination under the International Exchange Program or by other means. This determination was made on 12 September 2011. Other requests for this documentation will be referred to MCCS-IN, 3630 Stanley Rd Ste 101 Ft Sam Houston, TX 78234-6100. DESTRUCTION NOTICE: Destroy by any approved method, i.e., shredding, pulping, or pulverizing, that will prevent disclosure of contents or reconstruction of this document.. This publication is available at Army Knowledge Online (https://armypubs.us.army.mil/doctrine/index.html). To receive publishing updates, please subscribe at http://www.apd.army.mil/AdminPubs/new_subscribe.asp. STP 8-68W13-SM-TG 1SOLDIER TRAINING PUBLICATION HEADQUARTERS No. 8-68W13-SM-TG DEPARTMENT OF THE ARMY Washington, DC 3 May 2013 SOLDIER’s MANUAL and TRAINER’S GUIDE MOS 68W Health Care Specialist Skill Levels 1, 2 and 3 TABLE OF CONTENTS PAGE Table of Contents………………………………….…………………………………………….i Preface………………………………………………………………..……………………….…..v Chapter 1. Introduction ........................................................................................................... 1-1 1-1. General .............................................................................................................. 1-1 1-2.
    [Show full text]
  • Orthopaedic Examination Spinal Cord / Nerves
    9/6/18 OBJECTIVES: • Identify the gross anatomy of the upper extremities, spine, and lower extremities. • Perform a thorough and accurate orthopaedic ORTHOPAEDIC EXAMINATION examination of the upper extremities, spine, and lower extremities. • Review the presentation of common spine and Angela Pearce, MS, APRN, FNP-C, ONP-C extremity diagnoses. Robert Metzger, DNP, APRN, FNP - BC • Determine appropriate diagnostic tests for common upper extremity, spine, and lower extremity problems REMEMBER THE BASIC PRINCIPLES OF MUSCULOSKELETAL EXAMINATION Comprehensive History Comprehensive Physical Exam THE PRESENTERS • Chief Complaint • Inspection • HPI OLDCART • Palpation HAVE NO CONFLICTS OF INTEREST • PMH • Range of Motion TO REPORT • PSH • Basic principles use a goniometer to assess joint ROM until you can • PFSH safely eyeball it • ROS • Muscle grading • Physical exam one finger point • Sensation to maximum pain • Unusual findings winging and atrophy SPINAL COLUMN SPINAL CORD / NERVES • Spinal cord • Begins at Foramen Magnum and • Consists of the Cervical, Thoracic, continues w/ terminus at Conus Medullaris near L1 and Lumbar regions. • Cauda Equina • Collection of nerves which run from • Specific curves to the spinal column terminus to end of Filum Terminale • Lordosis: Cervical and Lumbar • Nerve Roots • Kyphosis: Thoracic and Sacral • Canal is broader in cervical/ lumbar regions due to large number of nerve roots • Vertebrae are the same throughout, • Branch off the spinal cord higher except for C1 & C2, therefore same than actual exit through
    [Show full text]
  • Physical Examination of Knee Ligament Injuries..Pdf
    Review Article Physical Examination of Knee Ligament Injuries Abstract Robert D. Bronstein, MD The knee is one of the most commonly injured joints in the body. Joseph C. Schaffer, MD A thorough history and physical examination of the knee facilitates accurate diagnosis of ligament injury. Several examination techniques for the knee ligaments that were developed before advanced imaging remain as accurate or more accurate than these newer imaging modalities. Proper use of these examination techniques requires an understanding of the anatomy and pathophysiology of knee ligament injuries. Advanced imaging can be used to augment a history and examination when necessary, but should not replace a thorough history and physical examination. he knee joint is one of the most injuries because the current injury may Tcommonly injured joints in the be the sequela of a previous injury. body. Knee ligament injury and sub- Here, we present specific tech- sequent instability can cause consid- niques for the ligamentous exami- erable disability. Diagnosis of knee nation, including identifying injuries ligament injuries requires a thorough of the anterior cruciate ligament understanding of the anatomy and (ACL), the medial collateral liga- the biomechanics of the joint. Many ment (MCL), the lateral collateral specific examination techniques were ligament (LCL), the posterolateral cor- developed before advanced imaging, ner (PLC), and the posterior cruciate and several techniques remain as ligament (PCL), and describe the asso- accurate or more accurate than the ciated anatomy and biomechanics and From the Division of Sports Medicine, new imaging modalities. Advanced the methods that allow for increased Department of Orthopaedics, University of Rochester School of Medicine and imaging (eg, MRI) is appropriate to diagnostic sensitivity and accuracy.
    [Show full text]
  • General Physical Examination
    BLSA Operations Manual Volume I Section IV, page 1 GENERAL PHYSICAL EXAMINATION 1. Background and Rationale The physical examination is an important component of translational research. It yields noninvasive, inexpensive and informative data that contributes to clinically relevant diagnoses, prognosis, and assessment of risk. In addition, the physical examination is important to participants and promotes recruitment and retention in the study. 1.1 Objective The objectives of the physical examination are: 1) To document physical findings in the cardiovascular, musculoskeletal and nervous systems that are related to mobility in older adults 2) To screen participants for testing exclusion criteria to allow safe and meaningful completion of performance testing 1.1 Recommended Instrument(s) 1.2 Strengths and weaknesses of selected approach The strengths of the physical examination include ease of performance, non- invasive nature (i.e. low risk), and direct contact with participants. The weakness of the physical examination, in general, is related to the potential variation in assessment measures and the level of expertise of examiners, the lack of standardized assessment methods for research, and the subjective nature. These effects can be limited by implementing standardized protocols using published techniques when available, utilizing experienced nurse practitioners (NPs) and physicians, training the examiners in standardized fashion, and incorporating ongoing quality control programs that include direct observation and certification. 1.3 Analagous (past) measures used in the BLSA This is the first version of a fully standardized physical examination protocol that has undergone rigorous training, certification processes, monitoring and quality control checks. 1.4 Reliability/Validity Studies Limited studies are available on performing the physical examination for Version 1.0 BLSA Operations Manual Volume I Section IV, page 2 research purposes.
    [Show full text]
  • Lower Limb Orthopaedic Examination Workshop Mr Venu Kavarthapu, Mr Patrick Li
    1 Lower Limb Orthopaedic Examination Workshop Mr Venu Kavarthapu, Mr Patrick Li General Tips Movements: Hip- passive only. Knee-passive and active. Foot and ankle- passive and active. Spine- active only. Always consider examining (screening) the joint above and below as appropriate ______________________________________ Hip Examination (Common pathological conditions: Young adults: Sports injuries, Hip Impingement, Hip Dyspasia. Middle aged: Sports injuries, Hip Impingement, Hip Dyspasia, Osteoarthritis. Older patients: Osteoarthritis.) Pitfalls: Hip pain is generally felt in the groin, trochanter (lateral), anterior thigh, buttock (posterior trochanter) and knee regions. It is important to identify conditions such as Hip Dysplasia and Hip Impingement in young patients before they become severely symptomatic as the treatment is less invasive if identified early. Look for other sources of pain such as lower back, sacro-iliac joint, inguinal hernia etc. Standing Look from front Shoulder level Pelvis level Leg alignment (knee) Leg lengths Look from side Spine alignment Gluteal muscle bulk Attitude of hip and knee joints Look from behind Spine alignment Hindfoot Gait Antalgic gait Trendelenburg’s sign Spine screening Sitting Knee screening Look spine Supine Non-weight bearing alignment of legs Apparent leg length measurement True leg length measurement 2 Tenderness over trochanter, anterior hip region, other tender areas Movements: Thomas’ test (for fixed flexion deformity) Internal rotation and external rotation in hip flexion Internal rotation and external rotation in hip extension (look at knee caps) Abduction Adduction Prone position Hip extension Sacro-iliac joint tenderness Special situations Young Patient: Young patients with hip pain may have Hip Impingement Syndrome. Hip Impingement sign may be the only positive finding.
    [Show full text]
  • C:\Users\Susan\American Board of Family Medicine\ABFM Editors
    American Board of Family Medicine IN-TRAINING EXAMINATION Publication or reproduction in whole or in part is strictly prohibited. Copyright © 2019 The American Board of Family Medicine. All rights reserved. 1. A 42-year-old female presents for follow-up after being treated for recurrent respiratory problems at an urgent care facility. She is feeling a little better after a short course of oral prednisone and use of an albuterol (Proventil, Ventolin) inhaler. She has had a gradual increase in shortness of breath, a chronic cough, and a decrease in her usual activity level over the past year. She has brought a copy of a recent chest radiograph report for your review that describes panlobular basal emphysema. She does not have a history of smoking, secondhand smoke exposure, or occupational exposures. Spirometry in the office reveals an FEV1/FVC ratio of 0.67 with no change after bronchodilator administration. Which one of the following underlying conditions is the most likely cause for this clinical presentation? A) 1-Antitrypsin deficiency B) Bronchiectasis C) Diffuse panbronchiolitis D) Interstitial lung disease E) Left heart failure 2. An otherwise healthy 57-year-old male presents with mild fatigue, decreased libido, and erectile dysfunction. A subsequent evaluation of serum testosterone reveals hypogonadism. Which one of the following would you recommend at this time? A) No further diagnostic testing B) A prolactin level C) A serum iron level and total iron binding capacity D) FSH and LH levels E) Karyotyping 3. A 4-year-old female is brought to your office because of a history of constipation over the past several months.
    [Show full text]