Basics Concepts of Pharmacokinetics

Total Page:16

File Type:pdf, Size:1020Kb

Basics Concepts of Pharmacokinetics Basic Concepts of Pharmacokinetics Achiel Van Peer, Ph.D. Clinical Pharmacology 1 Gent, 24 August 2007/avpeer Some introductory Examples 2 Gent, 24 August 2007/avpeer 15 mg of Drug X in a slow release OROS capsule administered in fasting en fed conditions in comparison to 15 mg in solution fasting 3 Gent, 24 August 2007/avpeer Prediction of drug plasma concentrations before the first dose in a human NOAEL in female rat NOAEL in female dog NOAEL in male dog NOAEL in male rat First dose 5 mg Fabs 100% Fabs 50% Fabs 20% 4 Gent, 24 August 2007/avpeer Allometric Scaling 5 Gent, 24 August 2007/avpeer Pharmacokinetics: Time Profile of Drug Amounts Drug at absorption site Metabolites Drug in body Percent of dose Excreted drug Time (arbitrary units) Rowland and Tozer, Clinical Pharmacokinetics: Concepts and Applications, 3rd Ed. 1995 6 Gent, 24 August 2007/avpeer Definition of Pharmacokinetics ? Pharmacokinetics is the science describing drug absorption from the administration site distribution to tissues, target sites of desired and/or undesired activity metabolism excretion PK= ADME 7 Gent, 24 August 2007/avpeer We will cover Some introductory Examples Model-independent Approach Compartmental Approaches Drug Distribution and Elimination Multiple-Dose Pharmacokinetics Drug Absorption and Oral Bioavailability Role of Pharmacokinetics 8 Gent, 24 August 2007/avpeer The simplest approach … observational pharmacokinetics The Model-independent Approach Cmax : maximum observed concentration Tmax : time of Cmax AUC : area under the curve 9 Gent, 24 August 2007/avpeer Cmax, Tmax and AUC in Bioavailability and Bioequivalence Studies Absolute bioavailability (Fabs) compares the amount in the systemic circulation after intravenous (reference) and extravascular (usually oral) dosing Fabs = AUCpo/AUCiv for the same dose between 0 and 100% (occasionally >100%) Relative bioavailability (Frel) compares one drug product (e.g. tablet) relative to another drug product (solution) Bioequivalence (BE): a particular Frel Two drug products with the same absorption rate (Cmax, Tmax) and the same extent (AUC) of absorption (90% confidence intervals for Frel between 80-125%) 10 Gent, 24 August 2007/avpeer Absolute oral bioavailability flunarizine, J&J data on file Other example: nebivolol: 10% in extensive metabolisers; 100% in poor metabolisers 11 Gent, 24 August 2007/avpeer Area under the curve rapezoidal ruleT: divide the plasma concentration-time profile trapezoids, and to several AUCs of these trapezoidsadd the Conc CC1+ 2 Units, e.g. ng.h/mL AUCt1 - t2= ().(t 2− t 1 ) 2 Clast AUCextrapolated = λz 0 0 Time 12 August 2007/avpeerGent, 24 Elimination half-life ? Half-life (t1/2) : time the drug concentration needs to decrease by 50% 13 Gent, 24 August 2007/avpeer Elimination half-life ? visual inspection 14 Gent, 24 August 2007/avpeer Elimination half-life ? visual inspection or alternatives ? Half-life (t1/2) : time to decrease by 50% T1/2 = 6 hrs Derived from a semilog plot T1/2 = 0.693/λz 15 Gent, 24 August 2007/avpeer From Whole-Body Physiologically based Pharmacokinetics to Compartmental Models Poggesi et al., Nerviano Medical Science 16 Gent, 24 August 2007/avpeer Compartmental Approach drug distributes very rapidly to all tissues via the systemic circulation an equilibrium is rapidly established between the blood and the tissues, the body behaves like one (lumped) compartment does not mean that the concentrations in the different tissues are the same One-compartment PK model Drug Absorption Body compartment Drug Elimination 17 Gent, 24 August 2007/avpeer One compartment behaviour more often observed after oral drug intake 1000 100 Poor metabolisers 10 Extensive metabolisers 1 0 8 16 24 32 40 48 Time, hours 18 Gent, 24 August 2007/avpeer Intravenous dose of 0.2 mg Levocabastine (J&J data on file) 19 Gent, 24 August 2007/avpeer Depending on rate of equilibration with the systemic circulation, lumping tissues together, and simplification is possible Multi-Tissue or Multi-Compartment Whole Body Pharmacokinetic model Tri-compartment model Two-compartment model One-compartment model 20 Gent, 24 August 2007/avpeer Zero-order rate drug administration and first-order rate drug elimination Amount A in blood, plasma Infusion rate Rate of elimination is mg/min proportional to the Amount in blood/plasma dDose/dt = Ko = mg/min dA/dt = -k.A [Often K=Kel=K10] 21 Gent, 24 August 2007/avpeer First-order rate of drug disappearance Rate of elimination Amount A is proportional to [or Concentration C] the Amount or in blood, plasma Concentration in blood, plasma dA/dt = -k.A = -k.Vd.C Intravenous bolus If A = Amount in plasma, then V= Plasma volume If A = Remaining amount in the body, then Vd= Total volume of distribution 22 Gent, 24 August 2007/avpeer A single iv dose of 5 mg for a drug with immediate equilibration (one compartment behaviour) dA/dt = -k10.A = -k10.V.C dA/dt = -k10.A = -CL.C dC/dt = -k10.C -k10.t C = C0. e 23 Gent, 24 August 2007/avpeer A single iv dose of 5 mg -k10.t C = C0 e lnC = lnC0 -k10.t Remark for log10 scale: slope = k10/2.303 24 Gent, 24 August 2007/avpeer A single iv dose of 5 mg ln C = lnC0 -k10.t lnCC 1− ln0 . 2 693 k10 = = 2t − t 1 2t − t 1 Slope=k10 = the elimination rate constant Half-life = C2 0.693/k10 = half of C1 25 August 2007/avpeerGent, 24 A single iv dose of 5 mg dose 5000000ng Vd= = =30 .L 9 Cpo 162ng mL / = volume of distribution,Vd relates the drug concentration to the drug amount in the body 26 August 2007/avpeerGent, 24 One-Compartment model after intravenous administration Vd = volume of distribution, relates the drug concentration at a particular time to the drug amount in the body at that time k10= (first-order) elimination rate constant Clearance (CL) = Vd.K10 The volume of drug in the body cleared per unit time Half-life = 0.693 . Vd/CL 27 Gent, 24 August 2007/avpeer Compartmental Approach after intravenous dosing Distribution Central Peripheral compartment compartment Re-distribution Elimination Rapidly equilibrating tissues: plasma, red blood cells, liver, kidney, … Slower equilibrating: adipose tissues, muscle, … Usually peripheral compartment Slowly redistribution reason for long terminal half-life 28 Gent, 24 August 2007/avpeer Intravenous dose of 0.2 mg levocabastine -1 K12= 0.84 h V1 = 44 L V2 = 35 L K = 1.05 h- 21 1 -1 K10 = 0.4 h 29 Gent, 24 August 2007/avpeer Intravenous dose of 0.2 mg levocabastine Cld= k12.V1= 36.7 L/h V1 = 44 L V2 = 35 L Cld= k21.V2= 36.7 L/h Cl=K10 .V1=Dose/AUC= 1.77 L/h=30 mL/min Vdss = V1 + V2 30 Gent, 24 August 2007/avpeer Rates of drug exchange DAp/dt = - K10.Vc.Cp - K12.Vc.Cp + K21.Vt.Ct DAt/dt = K12.Vc.Cp - k12.Vt.Ct Initially very fast decay due to distribution to tissues and elimination (“distribution phase”) until equilibrium is reached (influx into and efflux from tissue is equal) After a pseudo-equilibrium is reached, there is only loss of drug from the body (“elimination phase”), but is in fact combination of redistribution from tissues and elimination Rate of redistribution may differ significantly across drugs; long terminal half-life is compounds sticks somewhere 31 Gent, 24 August 2007/avpeer Intravenous dose of 0.2 mg levocabastine Cp=A.e-α.t+B.e-β.t Cp=2.1.e-1.91 .t+2.5.e- 0.0224.t 0.693 0 . 693 t1 /term 2 =1 t /β 2 = = = 31h 0β . 0224h − 1 Vdβ = CL/β=Dose/(AUC. β)=Vdarea 32 August 2007/avpeerGent, 24 Two-compartmental model Central K12 Compartment Peripheral Vc Compartment K21 Vt K10 K10, K12, K21 are first order rate constants hybrid first-order rate constants α and β for the so-called distribution phase and elimination phases, T1/2α and T1/2β Vc, Vdss, Vdβ or Vdarea are Vd of central compartment, at steady-state, during elimination phase 33 Gent, 24 August 2007/avpeer Compartmental approach after intravenous dosing Shallow Peripheral Central compartment compartment Deep Peripheral compartment Compartments serve as reservoirs with different drug amounts (concentrations), different volumes, and different rates of exchange of drug with the central compartment. The shape of the plasma concentration-time profile empirically defines the number of compartmentsl 34 Gent, 24 August 2007/avpeer Intravenous Sufentanil Gepts et al., Anesthesiology, 83:1194-1204, 1995 35 Gent, 24 August 2007/avpeer Three compartmental model Sufentanil Pharmacokinetics Mixed-effects Population PK analysis (N =23) Population CV (%) Average Volume of distribution (L) Central (V1) 14.6 22 Rapidly equilibrating (V2) 66 31 Slowly equilibrating (V3) 608 76 At steady-state 689 Clearance (L/min) Systemic (CL or CL1) 0.88 23 Rapid distribution (CL2) 1.7 48 Slow distribution (CL3) 0.67 78 Gepts et al., Anesthesiology, 83:1194-1204, 1995 36 Gent, 24 August 2007/avpeer Three compartmental model Sufentanil Pharmacokinetics Fractional Rate constants Coefficients (min-1) A 0.94 K10 0.06 B 0.058 K12 0.11 C 0.0048 K13 0.05 K21 0.025 K31 0.0011 Exponents (min-1) Half-lives (min) α 0.24 t1/2 α 2.9 β 0.012 t1/2 β 59 γ 0.0006 t1/2 γ 1129 Gepts et al., Anesthesiology, 83:1194-1204, 1995 37 Gent, 24 August 2007/avpeer Compartmental approach after intravenous dosing Central Shallow Peripheral compartment compartment Deep Peripheral compartment Central Peripheral compartment compartment Effect site 38 Gent, 24 August 2007/avpeer Time profile of opioid concentrations in plasma and the predicted concentrations at the effect site based upon an effect compartment PK-PD model (expressed as percentage of the initial plasma concentration) Effect site concentration profile reflect difference in onset time of analgesia Shafer
Recommended publications
  • 1: Clinical Pharmacokinetics 1
    1: CLINICAL PHARMACOKINETICS 1 General overview: clinical pharmacokinetics, 2 Pharmacokinetics, 4 Drug clearance (CL), 6 Volume of distribution (Vd), 8 The half-life (t½), 10 Oral availability (F), 12 Protein binding (PB), 14 pH and pharmacokinetics, 16 1 Clinical pharmacokinetics General overview General overview: clinical pharmacokinetics 1 The ultimate aim of drug therapy is to achieve effi cacy without toxicity. This involves achieving a plasma concentration (Cp) within the ‘therapeutic window’, i.e. above the min- imal effective concentration (MEC), but below the minimal toxic concentration (MTC). Clinical pharmacokinetics is about all the factors that determine variability in the Cp and its time-course. The various factors are dealt with in subsequent chapters. Ideal therapeutics: effi cacy without toxicity Minimum Toxic Concentration (MTC) Ideal dosing Minimum Effective Concentration (MEC) Drug concentration Time The graph shows a continuous IV infusion at steady state, where the dose-rate is exactly appropriate for the patient’s clearance (CL). Inappropriate dosing Dosing too high in relation to the patient’s CL – toxicity likely Minimum Toxic Concentration (MTC) Minimum Effective Concentration (MEC) Dosing too low in relation to the Drug concentration patient’s CL – drug may be ineffective Time Some reasons for variation in CL Low CL High CL Normal variation Normal variation Renal impairment Increased renal blood fl ow Genetic poor metabolism Genetic hypermetabolism Liver impairment Enzyme induction Enzyme inhibition Old age/neonate 2 General overview Clinical Pharmacokinetics Pharmacokinetic factors determining ideal therapeutics If immediate effect is needed, a loading dose (LD) must be given to achieve a desired 1 concentration. The LD is determined by the volume of distribution (Vd).
    [Show full text]
  • Pharmacogenomic Profiling of ADME Gene Variants
    Review Pharmacogenomic Profiling of ADME Gene Variants: Current Challenges and Validation Perspectives Mariamena Arbitrio 1, Maria Teresa Di Martino 2, Francesca Scionti 2, Vito Barbieri 3, Licia Pensabene 4 and Pierosandro Tagliaferri 2,* 1 Institute of Neurological Sciences, UOS of Pharmacology, 88100 Catanzaro, Italy; [email protected] 2 Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, 88100 Catanzaro, Italy; [email protected] (M.T.D.M.); [email protected] (F.S.) 3 Medical Oncology Unit, Mater Domini Hospital, Salvatore Venuta University Campus, 88100 Catanzaro, Italy; [email protected] 4 Department of Medical and Surgical Sciences Pediatric Unit, Magna Graecia University, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0961-3697324 Received: 5 October 2018; Accepted: 13 December 2018; Published: 18 December 2018 Abstract: In the past decades, many efforts have been made to individualize medical treatments, taking into account molecular profiles and the individual genetic background. The development of molecularly targeted drugs and immunotherapy have revolutionized medical treatments but the inter-patient variability in the anti-tumor drug pharmacokinetics (PK) and pharmacodynamics can be explained, at least in part, by genetic variations in genes encoding drug metabolizing enzymes and transporters (ADME) or in genes encoding drug receptors. Here, we focus on high-throughput technologies applied for PK screening for the identification of predictive biomarkers of efficacy or toxicity in cancer treatment, whose application in clinical practice could promote personalized treatments tailored on individual’s genetic make-up. Pharmacogenomic tools have been implemented and the clinical utility of pharmacogenetic screening could increase safety in patients for the identification of drug metabolism-related biomarkers for a personalized medicine.
    [Show full text]
  • Pharmacokinetics, Biodistribution, and Pharmacodynamics of Drug Delivery Systems
    JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Title: Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems Authors: Patrick M. Glassman, Vladimir R. Muzykantov Affiliation: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Address: 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104-5158, United States Downloaded from jpet.aspetjournals.org at ASPET Journals on September 24, 2021 1 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Running Title: PK/PD Properties of Drug Delivery Systems Corresponding Authors: Vladimir R. Muzykantov ([email protected], (215) 898-9823) and Patrick M. Glassman ([email protected]) # of Text Pages: 22 # of Tables: 2 # of Figures: 4 Word Count – Abstract: 144 Word Count – Introduction: 350 Word Count – Discussion: N/A Downloaded from Non-Standard Abbreviations: Absorption, Distribution, Metabolism, and Elimination (ADME) Biodistribution (BD) Drug Delivery Systems (DDSs) Enhanced Permeability & Retention (EPR) jpet.aspetjournals.org Gastrointestinal (GI) Intravenously (IV) Neonatal Fc Receptor (FcRn) Monoclonal Antibody (mAb) Reticuloendothelial System (RES) at ASPET Journals on September 24, 2021 Pharmacodynamics (PD) Pharmacokinetics (PK) Physiologically-Based Pharmacokinetic (PBPK) Subcutaneously (SC) Target-Mediated Drug Disposition (TMDD) Recommended Section: Drug Discovery and Translational Medicine 2 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted.
    [Show full text]
  • Bioequivalence Study Protocol
    Study Code: Date: NOV2020/01917 NCT04406194 28.04.2020 Version: Clinical Study Protocol 1.0 OPEN-LABEL, RANDOMISED, SINGLE ORAL DOSE, TWO-PERIOD, CROSS-OVER TRIAL TO ASSESS THE FAVICOVIR 200 MG FILM BIOEQUIVALENCE OF TABLET (TEST DRUG) IN COMPARISON WITH AVIGAN 200 MG FILM TABLET (REFERENCE DRUG) IN HEALTHY MALE SUBJECTS UNDER FASTING CONDITIONS CLINICAL STUDY PROTOCOL “CONFIDENTIAL” Principal Investigator: Prof. Dr. Muradiye Nacak Clinical Center: Gaziantep Üniversitesi FARMAGEN GCP Center, Gaziantep –Turkey Sponsor: Atabay Kimya San. ve Tic. A.Ş. İstanbul-Turkey Contract Research Organisation (CRO) : ALPAN Farma Ltd.Şti. Kayseri- Turkey Contracted Analytical Laboratory: Novagenix Bioanalytical Drug R&D Centre, Ankara - Turkey NOTE: No part of this document may be reproduced. The document should be treated as the confidential property of Atabay Kimya San. ve Tic. A.Ş., Alpan Farma and Novagenix. Not divulged to unauthorised persons in any form, including publications and presentations, without written consent of Atabay Kimya San. ve Tic. A.Ş., Alpan Farma and Novagenix. Page 1 of 67 Study Code: Date: NOV2020/01917 28.04.2020 Version: Clinical Study Protocol 1.0 STUDY SYNOPSIS Study Title: Open-label, randomised, single oral dose, two-period, cross-over trial Favicovir 200 mg Film Tablet(Test to assess to bioequivalence of Drug) Avigan 200 mg Film Tablet (Reference in comparison with Drug) in healthy male subjects under fasting conditions Study Code: NOV2020/01917 Drugs: Test Drug* Favicovir 200 mg Film Tablet : “ ” containing 200 mg (Atabay-Turkey). favipiravir *: This drug is manufactured by Atabay Kimya San. ve Tic. A.Ş., Turkey. Reference Drug** Avigan 200 mg Film Tablet : “ ” containing 200 mg (Toyama Chemical Industry Co.Ltd./Japan).
    [Show full text]
  • Multidrug-Resistant Gram-Negative Bacteria
    Multidrug-Resistant Gram-Negative Bacteria: Trends, Risk Factors, and Treatments A worldwide public health problem, antibiotic resistance leads to treatment-resistant infections associated with prolonged hospitalizations, increased cost, and greater risk for morbidity. Lee S. Engel MD, PhD CASE INTRODUCTION An 80-year-old female nursing home resident with Antibiotics have saved the lives of millions of people a history of dementia, anemia, atrial fibrillation, and have contributed to the major gains in life ex- hypertension, incontinence, and recurrent urinary pectancy over the last century. In US hospitals, 190 tract infections (UTIs), as well as a long-term Foley million doses of antibiotics are administered each catheter, is admitted because she was found to be day.1 Furthermore, more than 133 million courses febrile and less responsive than normal. The patient of antibiotics are prescribed each year for outpatients. has no drug allergies. Upon admission, she has a However, antibiotic use has also resulted in a major temperature of 38.9ºC, heart rate of 92 beats/min, health care challenge—the development and spread and blood pressure of 106/64 mm Hg. The patient of resistant bacteria. Worldwide, antimicrobial resis- opens her eyes to stimuli but does not speak. Aside tance is most evident in diarrheal diseases, respira- from poor dentition and an irregular heart rate, tory tract infections, meningitis, sexually transmitted findings on physical examination, which includes infections, and hospital and health care–acquired in- a pulmonary and abdominal examination, are nor- fections.2 Vancomycin-resistant enterococci, methi- mal. Serum chemistries demonstrate a white blood cillin-resistant Staphylococcus aureus, multidrug-resis- cell (WBC) count of 11,300 cells/mm3.
    [Show full text]
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • Microrna Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms Behind Variable Drug Disposition and Strategy to Develop More Effective Therapy
    1521-009X/44/3/308–319$25.00 http://dx.doi.org/10.1124/dmd.115.067470 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:308–319, March 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Minireview MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy Ai-Ming Yu, Ye Tian, Mei-Juan Tu, Pui Yan Ho, and Joseph L. Jilek Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California Received September 30, 2015; accepted November 12, 2015 Downloaded from ABSTRACT Knowledge of drug absorption, distribution, metabolism, and excre- we review the advances in miRNA pharmacoepigenetics including tion (ADME) or pharmacokinetics properties is essential for drug the mechanistic actions of miRNAs in the modulation of Phase I and development and safe use of medicine. Varied or altered ADME may II drug-metabolizing enzymes, efflux and uptake transporters, and lead to a loss of efficacy or adverse drug effects. Understanding the xenobiotic receptors or transcription factors after briefly introducing causes of variations in drug disposition and response has proven the characteristics of miRNA-mediated posttranscriptional gene dmd.aspetjournals.org critical for the practice of personalized or precision medicine. The regulation. Consequently, miRNAs may have significant influence rise of noncoding microRNA (miRNA) pharmacoepigenetics and on drug disposition and response. Therefore, research on miRNA pharmacoepigenomics has come with accumulating evidence sup- pharmacoepigenetics shall not only improve mechanistic under- porting the role of miRNAs in the modulation of ADME gene standing of variations in pharmacotherapy but also provide novel expression and then drug disposition and response.
    [Show full text]
  • ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential
    pharmaceuticals Review ADME and Pharmacokinetic Properties of Remdesivir: Its Drug Interaction Potential Subrata Deb * , Anthony Allen Reeves, Robert Hopefl and Rebecca Bejusca Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (R.H.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +224-310-7870 Abstract: On 11 March 2020, the World Health Organization (WHO) classified the Coronavirus Disease 2019 (COVID-19) as a global pandemic, which tested healthcare systems, administrations, and treatment ingenuity across the world. COVID-19 is caused by the novel beta coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the inception of the pandemic, treatment options have been either limited or ineffective. Remdesivir, a drug originally designed to be used for Ebola virus, has antiviral activity against SARS-CoV-2 and has been included in the COVID-19 treatment regimens. Remdesivir is an adenosine nucleotide analog prodrug that is metabolically activated to a nucleoside triphosphate metabolite (GS-443902). The active nucleoside triphosphate metabolite is incorporated into the SARS-CoV-2 RNA viral chains, preventing its replication. The lack of reported drug development and characterization studies with remdesivir in public domain has created a void where information on the absorption, distribution, metabolism, elimination (ADME) properties, pharmacokinetics (PK), or drug-drug interaction (DDI) is limited. By Citation: Deb, S.; Reeves, A.A.; understanding these properties, clinicians can prevent subtherapeutic and supratherapeutic levels of Hopefl, R.; Bejusca, R. ADME and remdesivir and thus avoid further complications in COVID-19 patients. Remdesivir is metabolized Pharmacokinetic Properties of by both cytochrome P450 (CYP) and non-CYP enzymes such as carboxylesterases.
    [Show full text]
  • Addressing Toxicity Risk When Designing and Selecting Compounds in Early Drug Discovery
    Addressing Toxicity Risk when Designing and Selecting Compounds in Early Drug Discovery Matthew D. Segall* and Chris Barber† * Optibrium Ltd., 7221 Cambridge Research Park, Beach Drive, Cambridge, CB25 9TL † Lhasa Limited, 22-23 Blenheim Terrace, Woodhouse Lane, Leeds, LS2 9HD Abstract Toxicity accounts for approximately 30% of expensive, late stage failures in development. Therefore, identifying and prioritising chemistries with a lower risk of toxicity, as early as possible in the drug discovery process, would help to address the high attrition rate in pharmaceutical R&D. We will describe how expert knowledge-based prediction of toxicity can alert chemists if their proposed compounds are likely to have an increased risk of causing toxicity. However, an alert for potential toxicity should be given appropriate weight in the selection of compounds to balance potential opportunities against downstream toxicity risk. If a series achieves good outcomes for other requirements, it may be appropriate to progress selected compounds and generate experimental data to confirm or refute a prediction of potential toxicity. We will discuss how multi- parameter optimisation approaches can be used to balance the potential for toxicity with other properties required in a high quality candidate drug, such as potency and appropriate absorption, distribution, metabolism and elimination (ADME). Furthermore, it may be possible to modify a compound to reduce its likelihood of toxicity and we will describe how information on the region of a compound that triggers a toxicity alert can be interactively visualised to guide this redesign. 7221 Cambridge Research Park Tel: +44 1223 815900 Email: [email protected] Beach Drive, Cambridge Fax: +44 1223 815907 Website: www.optibrium.com CB25 9TL, UK Optibrium Limited, registered in England and Wales No.
    [Show full text]
  • Antimicrobial Stewardship Guidance
    Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) ..............................................................................
    [Show full text]
  • Absolute Bioavailability and Dose-Dependent Pharmacokinetic Behaviour Of
    Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2008), 99, 559–564 doi: 10.1017/S0007114507824093 q The Authors 2007 Absolute bioavailability and dose-dependent pharmacokinetic behaviour of . IP address: dietary doses of the chemopreventive isothiocyanate sulforaphane in rat 170.106.202.8 Natalya Hanlon1, Nick Coldham2, Adriana Gielbert2, Nikolai Kuhnert1, Maurice J. Sauer2, Laurie J. King1 and Costas Ioannides1* 1Molecular Toxicology Group, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, , on Surrey GU2 7XH, UK 30 Sep 2021 at 18:04:41 2TSE Molecular Biology Department, Veterinary Laboratories Agency Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK (Received 29 March 2007 – Revised 12 July 2007 – Accepted 25 July 2007) , subject to the Cambridge Core terms of use, available at Sulforaphane is a naturally occurring isothiocyanate with promising chemopreventive activity. An analytical method, utilising liquid chromatog- raphy-MS/MS, which allows the determination of sulforaphane in small volumes of rat plasma following exposure to low dietary doses, was devel- oped and validated, and employed to determine its absolute bioavailability and pharmacokinetic characteristics. Rats were treated with either a single intravenous dose of sulforaphane (2·8 mmol/kg) or single oral doses of 2·8, 5·6 and 28 mmol/kg. Sulforaphane plasma concentrations were determined in blood samples withdrawn from the rat tail at regular time intervals. Following intravenous administration, the plasma profile of sulforaphane was best described by a two-compartment pharmacokinetic model, with a prolonged terminal phase. Sulforaphane was very well and rapidly absorbed and displayed an absolute bioavailability of 82 %, which, however, decreased at the higher doses, indicating a dose-dependent pharmacokinetic behaviour; similarly, Cmax values did not rise proportionately to the dose.
    [Show full text]
  • Narrow Therapeutic Index Drugs
    Quality and Bioequivalence Standards for Narrow Therapeutic Index Drugs Lawrence X. Yu, Ph.D. Deputy Director for Science and Chemistry Office of Generic Drugs Center for Drug Evaluation and Research Food and Drug Administration GPhA 2011 Fall Technical Workshop 1 Bioequivalence • The absence of a significant difference in the rate and extent to which the active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives becomes available at the site of drug action when administrated at the same molar dose under similar conditions in an appropriately designed study…” (21 CFR §320.1) 2 Plasma Concentration Profile Cmax 10000 AUC ln Concentration 1000 Concentration Time Tmax - time of maximum concentration 100 Time 3 0 5 10 15 20 25 Possible Outcome of BE Studies Demonstrate BE Fail to Demonstrate BIE Fail to Demonstrate BE Demonstrate BIE Demonstrate BIE 80% T/R (%) 125% 4 5 FDA 12 Year BE Data Distribution of AUCt Ratios Average difference = 3.56% 10 N = 2069 8 6 Percent of Total(%) of Percent 4 2 0 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 6 AUC Point Estimate (T/R) Effect of Variability on BE Studies High variability 80% T/R (%) 125% 7 Development of BE Standard for Highly Variable Drugs 4/2004 First presentation to the FDA Advisory Committee 10/2006 Second presentation to the FDA Advisory Committee 3/2007 Received the first ANDA which used the new FDA BE approach 5/2007 Critical Path Opportunities for Generic Drugs BE of HVD 1/2008 FDA OGD’s first publication on BE of HVD (Pharm.
    [Show full text]