Lamin a and ZMPSTE24 (FACE-1) Defects Cause Nuclear
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New ZMPSTE24 (FACE1) Mutations in Patients Affected with Restrictive
New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update Claire Navarro, Patrice Roll, Vera Esteves-Vieira, Sebastien Courrier, Amandine Boyer, Thuy Duong Nguyen, Le Thi Thanh Huong, Peter Meinke, Winnie Schröder, Valérie Cormier-Daire, et al. To cite this version: Claire Navarro, Patrice Roll, Vera Esteves-Vieira, Sebastien Courrier, Amandine Boyer, et al.. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. European Journal of Human Genetics, Nature Publishing Group, 2013, 22 (8), pp.1002-1011. 10.1038/ejhg.2013.258. hal-01664301 HAL Id: hal-01664301 https://hal-amu.archives-ouvertes.fr/hal-01664301 Submitted on 20 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update Claire Laure Navarro*,1,2, Vera Esteves-Vieira3,Se´bastien Courrier1,2, Amandine Boyer3, Thuy Duong -
LMNA-Related Disorders
LMNA-Related Disorders Indications for Ordering Genetics To confirm a clinical diagnosis of a LMNA-related disorder, Genes: LMNA such as: • Hutchinson-Gilford progeria syndrome (HGPS) Inheritance: See table • Emery-Dreifuss muscular dystrophy type 2 (EDMD2) Penetrance: Varies by syndrome • Limb-Girdle muscular dystrophy 1B (LGMD1B) • Charcot-Marie-Tooth 2B1 (CMT2B1) Structure/Function • Familial partial lipodystrophy, Dunnigan type (FPLD) • Composed of 12 exons • LMNA-related dilated cardiomyopathy (DCM) • LMNA encodes isoforms A and C of the lamin protein • Mandibulo-acral dysplasia (MAD) o Structural component of the nuclear membrane • Atypical Werner syndrome (WS) o Anchors heterochromatin to the inner nuclear • Restrictive dermopathy (RD) membrane • Other, intermediate phenotypes Variants Test Description • Alternative splicing of the LMNA gene produces two proteins (lamin A and C) Polymerase chain reaction (PCR) followed by bidirectional • Variants occur throughout the gene sequencing of all coding regions and intron/exon o Predominantly missense boundaries of the LMNA gene o p.G608G variant in exon 11 . Present in all individuals with HGPS Tests to Consider Test Interpretation Primary Tests LMNA-Related Disorders (LMNA) Sequencing 2004543 Sensitivity/Specificity • Confirm suspected laminopathy caused by LMNA variants, • Clinical sensitivity: dependent on the specific LMNA- including HGPS, EDMD2, LGMD1B, CMT2B1, FPLD , DCM, related disorder MAD, WS, or RD • Analytic sensitivity/specificity: 99% Related Test Results Familial Mutation, -
Early Onset Diabetes in Two Children Due to Progeria, a Monogenic Disease of DNA Repair
CASE REPORT DO I: 10.4274/jcrpe.galenos.2019.2019.0126 J Clin Res Pediatr Endocrinol 2020;12(3):315-318 Early Onset Diabetes in Two Children due to Progeria, a Monogenic Disease of DNA Repair Martin Holder¹, Valerie Schwitzgebel² ¹Klinikum Stuttgart, Olgahospital, Department of Pediatric Endocrinology and Diabetology, Stuttgart, Germany ²Hopital des Enfants, Endocrinologie et Diabetologie Pediatriques, Geneve, Switzerland What is already known on this topic? Less is known about type 2 like diabetes mellitus in children and adolescents with progeria-syndrome although they have a high risk of developing diabetes mellitus. What this study adds? Early and regular screening for diabetes mellitus are mandatory. Treatment with metformin at an early stage should be recommended to prevent early symptoms of diabetes and potentially delay the clinical course of progeria Abstract Progeria syndrome is a rare disorder in childhood which causes accelerated systemic aging. Due to the accelerated aging process, disorders which normally occur only in old age will appear in these children at a much younger age. We report two children with progeria syndrome, in whom fulminant diabetes mellitus manifested at a very early age. Keywords: Progeria syndrome, diabetes mellitus, metformin, prevention. Introduction cardiovascular disease can occur. Additionally, they may have audiologic, dental, and ophthalmologic issues Progeria syndrome is a group of very rare genetic disorders that impair their lives. Less is known about metabolic which are characterized by premature aging and classified complications in children with progeria syndrome. In by various names based on causative etiology: Hutchinson- WS, also known as adult progeroid syndrome, type 2 like Gilford progeria syndrome (HGPS), Néstor-Guillermo progeria diabetes mellitus is one of the clinical manifestations of syndrome, atypical progeria syndromes, restrictive dermopathy, the disease and attention must give to the differential mandibuloacral dysplasia, Werner syndrome (WS), Bloom diagnosis (1). -
Werner and Hutchinson–Gilford Progeria Syndromes: Mechanistic Basis of Human Progeroid Diseases
REVIEWS MECHANISMS OF DISEASE Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases Brian A. Kudlow*¶, Brian K. Kennedy* and Raymond J. Monnat Jr‡§ Abstract | Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson–Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases. Progeroid syndromes are heritable human disorders with therefore termed segmental, as opposed to global, features that suggest premature ageing1. These syndromes progeroid syndromes. Among the segmental progeroid have been well characterized as clinical disease entities, syndromes, the syndromes that most closely recapitu- and in many instances the associated genes and causative late the features of human ageing are Werner syndrome mutations have been identified. The identification of (WS), Hutchinson–Gilford progeria syndrome (HGPS), genes that are associated with premature-ageing-like Cockayne syndrome, ataxia-telangiectasia, and the con- syndromes has increased our understanding of molecu- stitutional chromosomal disorders of Down, Klinefelter lar pathways that protect cell viability and function, and -
Hutchinson-Gilford Progeria Syndrome—Current Status and Prospects for Gene Therapy Treatment
cells Review Hutchinson-Gilford Progeria Syndrome—Current Status and Prospects for Gene Therapy Treatment Katarzyna Piekarowicz † , Magdalena Machowska † , Volha Dzianisava and Ryszard Rzepecki * Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland; [email protected] (K.P.); [email protected] (M.M.); [email protected] (V.D.) * Correspondence: [email protected]; Tel.: +48-71-3756308 † Joint first author. Received: 1 December 2018; Accepted: 19 January 2019; Published: 25 January 2019 Abstract: Hutchinson-Gilford progeria syndrome (HGPS) is one of the most severe disorders among laminopathies—a heterogeneous group of genetic diseases with a molecular background based on mutations in the LMNA gene and genes coding for interacting proteins. HGPS is characterized by the presence of aging-associated symptoms, including lack of subcutaneous fat, alopecia, swollen veins, growth retardation, age spots, joint contractures, osteoporosis, cardiovascular pathology, and death due to heart attacks and strokes in childhood. LMNA codes for two major, alternatively spliced transcripts, give rise to lamin A and lamin C proteins. Mutations in the LMNA gene alone, depending on the nature and location, may result in the expression of abnormal protein or loss of protein expression and cause at least 11 disease phenotypes, differing in severity and affected tissue. LMNA gene-related HGPS is caused by a single mutation in the LMNA gene in exon 11. The mutation c.1824C > T results in activation of the cryptic donor splice site, which leads to the synthesis of progerin protein lacking 50 amino acids. -
Outcomes of 4 Years of Molecular Genetic Diagnosis on a Panel Of
Grelet et al. Orphanet Journal of Rare Diseases (2019) 14:288 https://doi.org/10.1186/s13023-019-1189-z RESEARCH Open Access Outcomes of 4 years of molecular genetic diagnosis on a panel of genes involved in premature aging syndromes, including laminopathies and related disorders Maude Grelet1,2, Véronique Blanck1, Sabine Sigaudy1,2, Nicole Philip1,2, Fabienne Giuliano3, Khaoula Khachnaoui3, Godelieve Morel4,5, Sarah Grotto6, Julia Sophie7, Céline Poirsier8, James Lespinasse9, Laurent Alric10, Patrick Calvas7, Gihane Chalhoub11, Valérie Layet12, Arnaud Molin13, Cindy Colson13, Luisa Marsili14, Patrick Edery4,5, Nicolas Lévy1,2,15 and Annachiara De Sandre-Giovannoli1,2,15* Abstract Background: Segmental progeroid syndromes are a heterogeneous group of rare and often severe genetic disorders that have been studied since the twentieth century. These progeroid syndromes are defined as segmental because only some of the features observed during natural aging are accelerated. Methods: Since 2015, the Molecular Genetics Laboratory in Marseille La Timone Hospital proposes molecular diagnosis of premature aging syndromes including laminopathies and related disorders upon NGS sequencing of a panel of 82 genes involved in these syndromes. We analyzed the results obtained in 4 years on 66 patients issued from France and abroad. Results: Globally, pathogenic or likely pathogenic variants (ACMG class 5 or 4) were identified in about 1/4 of the cases; among these, 9 pathogenic variants were novel. On the other hand, the diagnostic yield of our panel was over 60% when the patients were addressed upon a nosologically specific clinical suspicion, excepted for connective tissue disorders, for which clinical diagnosis may be more challenging. -
Lamin A/C Mechanotransduction in Laminopathies
cells Review Lamin A/C Mechanotransduction in Laminopathies , Francesca Donnaloja , Federica Carnevali, Emanuela Jacchetti * y and Manuela Teresa Raimondi y Department of Chemistry, Materials and Chemical Engineering “G.Natta”, Politecnico di Milano, 20133 Milano, Italy; [email protected] (F.D.); [email protected] (F.C.); [email protected] (M.T.R.) * Correspondence: [email protected] These authors contributed equally. y Received: 30 March 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies. -
Blueprint Genetics Progeria and Progeroid Syndromes Panel
Progeria and Progeroid Syndromes Panel Test code: DE0201 Is a 17 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of Hutchinson-Gilford progeria syndrome or a syndrome with progeroid features. About Progeria and Progeroid Syndromes Hutchinson-Gilford progeria syndrome (HGPS) is caused by LMNA mutations with autosomal dominant inheritance but almost all individuals with HGPS have a de novo mutation. All the major syndromes with proreroid features have autosomal recessive inheritance although the ALDH18A1 related cutis laxa is also inherited in dominant manner. HGPS manifest with features of accelerated aging observed in early childhood. Age of disease onset and progress rate varies but is remarkably consistent overall. Children with HGPS usually appear normal at birth. Profound failure to thrive occurs during the first year. Patients have a head disproportionately large for face, prominent eyes, partial alopecia progressing to total alopecia, loss of subcutaneous fat, progressive joint contractures, bone changes and nail dystrophy occur by age of three. Later symptoms include conductive hearing loss, dental crowding and partial lack of secondary tooth eruption. Motor and mental development is normal. Average life span is approximately 15 years. Premature death occurs as a result of atherosclerotic events, either myocardial infarct or stroke. Diagnosis is based on clinical features and detection of heterozygous LMNA variants either within exon 11 (termed classic HGPS) or at the intronic border of exon 11 (termed atypical HGPS). Although no other gene than LMNA associates with HGPS, premature aging occur in many other syndromes with so-called progeroid features, thus the panel also include genes causing the following syndromes: Cockayne syndrome, congenital generalized lipodystrophy, cutis laxa and progeroid type Ehlers-Danlos syndrome among some others. -
Progeroid Laminopathy with Restrictive Dermopathy-Like Features Caused By
www.impactaging.com AGING, June 2013, Vol. 5 No 6 Research Paper Progeroid laminopathy with restrictive dermopathy‐like features caused by an isodisomic LMNA mutation p.R435C Sven Starke1,2#, Peter Meinke3#, Daria Camozzi4, Elisabetta Mattioli4, Roland Pfaeffle1, Manuela Siekmeyer1, Wolfgang Hirsch5, Lars Christian Horn6, Uwe Paasch7, Diana Mitter8, Giovanna 4 3 1 Lattanzi , Manfred Wehnert , and Wieland Kiess 1 Department of Women and Child Health, Hospital for Children and Adolescents, Centre of Pediatric Research, University Hospital, University of Leipzig, Leipzig, Germany 2 Department of Pediatric Oncology, Hematology and Hemostaseology, Hospital for Children and Adolescents, University Hospital, University of Leipzig, Leipzig, Germany 3 Institute of Human Genetics Greifswald, University Medicine Greifswald and Interfaculty, Institute of Genetics and Functional Genomics, University of Greifswald, Germany 4 National Research Council of Italy, CNR, Institute of Molecular Genetics, Unit of Bologna, Italy 5 Department of Pediatric Radiology, University Hospital of Leipzig, Leipzig, Germany 6 Institute of Pathology, Division of Breast, Gynecologic and Perinatal Pathology, University of Leipzig, Leipzig, Germany 7 Department of Dermatology, Venereology, and Allergology, University Hospital of Leipzig, Leipzig, Germany 8 Institute of Human Genetics, University Hospital of Leipzig, Leipzig, Germany # These authors contributed equally to the work. Key words: Progeroid syndrome; LMNA; DNA damage; uniparental disomy; 53BP1 Received: 4/9/13; Accepted: 6/13/13; Published: 6/19/13 Correspondence to: Sven Starke, PhD; E‐mail: [email protected] ‐leipzig.de Copyright: © Starke et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: The clinical course of a female patient affected by a progeroid syndrome with Restrictive Dermopathy (RD)‐like features was followed up. -
A Complex LINC Between Nuclear Envelope and Pathology
Janin et al. Orphanet Journal of Rare Diseases (2017) 12:147 DOI 10.1186/s13023-017-0698-x REVIEW Open Access Nuclear envelopathies: a complex LINC between nuclear envelope and pathology Alexandre Janin1,2,3,4, Delphine Bauer1,2,3, Francesca Ratti1,2,3, Gilles Millat1,2,3,4 and Alexandre Méjat1,2,3,5,6* Abstract Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain. Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. -
DNA Damage Responses in Progeroid Syndromes Arise from Defective Maturation of Prelamin A
4644 Research Article DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A Yiyong Liu, Antonio Rusinol, Michael Sinensky, Youjie Wang and Yue Zou* Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA *Author for correspondence (e-mail: [email protected]) Accepted 15 September 2006 Journal of Cell Science 119, 4644-4649 Published by The Company of Biologists 2006 doi:10.1242/jcs.03263 Summary The genetic diseases Hutchinson-Gilford progeria farnesyltransferase inhibitor (FTI) did not result in syndrome (HGPS) and restrictive dermopathy (RD) arise reduction of DNA double-strand breaks and damage from accumulation of farnesylated prelamin A because of checkpoint signaling, although the treatment significantly defects in the lamin A maturation pathway. Both of these reversed the aberrant shape of their nuclei. This suggests diseases exhibit symptoms that can be viewed as that DNA damage accumulation and aberrant nuclear accelerated aging. The mechanism by which accumulation morphology are independent phenotypes arising from of farnesylated prelamin A leads to these accelerated aging prelamin A accumulation in these progeroid syndromes. phenotypes is not understood. Here we present evidence Since DNA damage accumulation is an important that in HGPS and RD fibroblasts, DNA damage contributor to the symptoms of HGPS, our results call into checkpoints are persistently activated because of the question the possibility of treatment of HGPS with FTIs compromise in genomic integrity. Inactivation of alone. checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient Key words: DNA damage responses, Progeria, Lamin A, cells can partially overcome their early replication Farnesyltransferase inhibitor, DNA double-strand breaks, ATR and arrest. -
Mutations in Patients Affected with Restrictive Dermopathy Or Related Progeroid Syndromes and Mutation Update
European Journal of Human Genetics (2014) 22, 1002–1011 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update Claire Laure Navarro*,1,2, Vera Esteves-Vieira3,Se´bastien Courrier1,2, Amandine Boyer3, Thuy Duong Nguyen4,5, Le Thi Thanh Huong4,6, Peter Meinke4,14, Winnie Schro¨der4, Vale´rie Cormier-Daire7, Yves Sznajer8, David J Amor9, Kristina Lagerstedt10, Martine Biervliet11, Peter C van den Akker12, Pierre Cau1,2,13, Patrice Roll1,2,13, Nicolas Le´vy1,2,3, Catherine Badens1,2,3, Manfred Wehnert4,15 and Annachiara De Sandre-Giovannoli1,2,3 Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes.