The Bronze Killer: Haemochromatosis and Diabetes Jenny E

Total Page:16

File Type:pdf, Size:1020Kb

The Bronze Killer: Haemochromatosis and Diabetes Jenny E Peer Review Australian Diabetes Educator, Volume 17 Number 2, June 2014 The Bronze Killer: Haemochromatosis and Diabetes Jenny E. Gunton, Amit Lalwani Introduction commonly inherited disorders. overload often goes undetected There is abnormally increased for years, until the damage is Haemochromatosis is one of absorption of iron from the done. Haemochromatosis has the causes of diabetes. It leads intestine, leading to deposition been called the ‘Celtic curse’ to excess iron in the blood and of excess iron in a wide range of based on its higher prevalence more importantly in the tissues organs. It is sometimes referred in people from Ireland, Wales, of the body. It is one of the most to as a ‘silent killer’ because iron Scotland, and Great Britain. Types of Haemochromatosis An overview of iron trafficking is shown below in Figure 1 Figure 1 - Overview of iron trafficking and metabolism: Hepcidin is a regulator of iron trafficking. In normal individuals, circulatory iron received from daily food intake sets hepcidin synthesis by hepatocytes at a basal level. The amount of iron released from macrophages and intestine (enterocytes) is modified by serum hepcidin that contributes to the pool of circulatory iron in a regulatory feedback loop to keep the hepatic production of hepcidin under control. Hepcidin blocks ferroportin activity, which inhibits iron absorption from the intestine (duodenum) and iron recycling from macrophages. Hepcidin is synthesized in the liver, and its decreased production leads to excess accumulation of iron in enterocytes and macrophages. HFE, the product of the haemochromatosis gene, is required for hepcidin activation in response to the circulatory iron signal. Hence mutations in this gene (or in hepcidin) disrupt iron homeostasis and cause haemochromatosis. Corresponding author: Jenny E. Gunton References and M.B.B.S, FRACP, PhD Acknowledgements: Diabetes and Transcription Factors Lab Head Garvan Institute of Medical Research [email protected] 34 Australian Diabetes Educator, Volume 17 Number 2, June 2014 There are a number of genes arthropathy affecting the 1st, 2nd Diagnosis that when mutated lead to and/or 3rd metacarpophalangeal haemochromatosis. These joints may develop, which is a The first step in diagnosing an genes include HAMP (hepcidin classic sign3,4. People with this iron-overload disorder is to assess antimicrobial peptide), HFE pattern of arthritis, which spares iron status. If the probability of (haemochromatosis), HFE2 other joints, who also have diabetes, haemochromatosis is thought to (haemochromatosis type 2 should always be screened for be low, a simple measurement (juvenile)), SLC40A1 (solute haemochromatosis. Images of of ferritin alone could be carrier family 40 (iron-regulated the hands of 2 normal individuals undertaken. However, ferritin transporter), member 1), and (Austrian origin) indicating is an acute phase reactant, so it TFR2 (transferrin receptor 2). the relevant joints is shown goes up with any acute illness, A mutation in each type of in Figure 2. A diagrammatic including viruses, so it may be gene causes a specific type illustration of course of more useful to request “iron of haemochromatosis1. The progression of haemochromatosis studies”. These will include commonest by far is HFE, which is shown in Figure 3. The classic serum iron, transferrin, ferritin is responsible for classic, or type 1 bronze skin colour is usually a and either TIBC (total iron haemochromatosis. The different late symptom, as in the case of binding capacity) or transferrin types of haemochromatosis and ‘bronze diabetes’. saturation. Iron studies therefore the gene mutation(s) responsible allow assessment of iron status are listed in Table 1 below. so long as there is not a severe illness at the time. If the iron Table 1 – Different types of haemochromatosis studies suggest that the person has excess iron, with high transferrin saturation (or low Haemochromatosis Type Gene involved TIBC) and high ferritin, then Type 1 haemochromatosis or HFE (haemochromatosis) proceeding to genetic testing is Classic haemochromatosis indicated. Normal ranges vary HAMP (hepcidin antimicrobial between laboratories, but the Type 2 haemochromatosis peptide) or HFE2 (hemochromatosis ‘normal’ for ferritin in males is type 2 (juvenile)) approximately 30-300 µg/L and 6,7 Type 3 haemochromatosis TFR2 (transferrin receptor 2) for females is 10-200 µg/L . Type 4 haemochromatosis or SLC40A1 (solute carrier family 40 Mutations in the HFE gene are Ferroportin disease (iron-regulated transporter), member 1) identified by genetic testing (i.e. sequencing the gene). This is somewhat expensive, but more Prevalence importantly, identifying genetic In very rare cases, iron overload disorders in people comes with accumulates before birth. Haemochromatosis is more the crucial need for pre-test and These cases are called neonatal post-test genetic counselling, so haemochromatosis. It progresses common in people of Northern European backgrounds with it must not be undertaken lightly. rapidly and is characterized by Since it is a genetic disease, if liver damage that is apparent approximately 1 in 11 persons being heterozygous carriers and identified, it also has implications at birth or on the first day of for testing of parents, siblings life. The gene or genes causing 1 in 200 being homozygous for C282Y mutations. The and children. These are the neonatal haemochromatosis are reasons why assessing iron status not known2. expression of the disease is affected by factors that include should be done as the first step Clinical Presentation/ alcohol consumption, dietary except in the case of screening Features/Expression/ iron intake, blood loss due to relatives of people with known Manifestations menstruation and pregnancy, haemochromatosis. and blood donation. Other There are no symptoms specific to contributing factors include blood In patients who are positive haemochromatosis. Diagnosis can transfusions, oral iron pills or for mutations, usually MRI be missed even in advanced stages iron injections, with or without (magnetic resonance imaging) unless looked for specifically. Early supplemental vitamin C intake of the liver is undertaken to diagnosis is difficult. Symptoms (vitamin C helps your body to assess hepatic iron loading, and usually start between ages 30-50 absorb iron), hepatitis, or non- a liver fibroscan (a special kind in men, but may begin earlier in alcoholic steatohepatitis5. of ultrasound) is often done some patients and are usually later to assess fibrosis. These tests in women. Initial symptoms are Haemochromatosis is much less together assess liver risk and will non-specific and include fatigue, common in Asia, the Middle East usually, in combination with the weakness, nonspecific abdominal and most of Africa because of a serum iron studies, decide the problems and pseudogout. Later, lower prevalence of the genetic mutations in non-Caucasians. CONTINUED ON PAGE 36 › 35 Peer Review › FROM PAGE 35 Australian Diabetes Educator, Volume 17 Number 2, June 2014 Table 2 – Complications of haemochromatosis Sign/Disease Symptoms Occurs in about 35-75% of the patients. Hepatomegaly. Liver disease Chronic liver disease signs, such as cutaneous stigmata of liver disease (palmar erythema, spider angioma, or jaundice). Liver failure. Cirrhosis. Hepatocellular carcinoma develops in 30% of patients with cirrhosis (risk > 200-fold). Up to 65% of patients. More likely to develop in those with a family history of diabetes. Prevented by early treatment. Diabetes Early alteration of glucose intolerance and insulin resistance may partially be improved by phlebotomy treatment. Treatment after long-term diabetes is unlikely to reverse glucose intolerance. Bronzing or metallic or slate grey skin coloration. Hyper-pigmentation Results from a combination of iron deposition and melanin in the dermis. or skin bronzing Pigmentation is usually diffused and generalized, but may be more prominent on the face, neck, lower forearms, lower legs and genital regions. Arthropathy (abnormality of joints) develops in 25-50% of patients More commonly occurs after age 50. Non-inflammatory. Arthropathy Particularly involves the small joints of the hands, especially the first, second and/or third metacarpophalangeal joints (CLASSIC SIGN). Usually no warmth, redness, or deformity. Congestive heart failure Abnormal heart rhythms (arrhythmias), which can cause symptoms of palpitations, Heart disease chest pain and lightheadedness. Cardiomyopathy (enlarged heart muscle). Pituitary dysfunction produces a plethora of endocrine disturbances. Reduced gonadotropin levels are seen commonly. Can also cause reductions in Pituitary disease gonadal synthesis of sex steroids, which in turn delays sexual maturation in some children with transfusional iron overload. Infertility is also seen quite commonly. Can occur in both males and females. Loss of libido, impotency, amenorrhea, testicular atrophy, sparse body hair. The production of gonadotropins is decreased due to impairment of hypothalamic- Hypogonadism/ pituitary function by excess iron deposition. Infertility Adrenal insufficiency, hypothyroidism and hypoparathyroidism is seen in rare cases. Excess iron deposition in the hypothalamus and/or pituitary can affect production of hormones that are critical for reproductive function. treatment offered. Treatment of they would be given dietary These tests have largely removed Haemochromatosis recommendations alone and be the need for liver biopsy, except followed
Recommended publications
  • Evaluation of Iron Profile in Type II Diabetes Mellitus Cases
    International Journal of Biotechnology and Biochemistry ISSN 0973-2691 Volume 15, Number 1 (2019) pp. 27-37 © Research India Publications http://www.ripublication.com Evaluation of Iron Profile in Type II Diabetes Mellitus Cases Dr. Sayantaann Saha*, Dr. Roopa Murgod Department of Biochemistry Vydehi Institute of Medical Sciences and Research Centre, EPIP Area, Whitefield, Bangalore 560066, India. ABSTRACT Introduction: Type 2 diabetes mellitus is the most common metabolic disorder, characterized by chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Iron, a transitional metal has been shown to play a major role in pathogenesis of T2DM with a bi-directional relationship where iron affects glucose metabolism, and glucose metabolism in turn impinges on several iron metabolic pathways. Aims or Objectives: To estimate and compare the parameters related to iron metabolism viz. Serum Iron (Fe), Serum Ferritin, Serum TIBC (Total Iron Binding Capacity), Serum Transferrin and Transferrin Saturation with Fasting Blood Sugar (FBS) between T2DM patients and healthy controls and correlation of FBS with the above iron parameters. Material and methods: A case control study was conducted between 41 cases of confirmed T2DM patients and 40 age & sex matched healthy controls. Iron profile parameters & FBS were estimated in both the groups and compared. Iron parameters were also correlated with FBS. * Corresponding author(Dr. Sayantaann Saha), Email id: [email protected] 28 Dr. Sayantaann Saha, Dr. Roopa Murgod Results: Serum ferritin, Serum iron & serum transferrin saturation were found to be significantly higher in patients with T2DM compared to control group (P<0.001). Serum transferrin & serum TIBC were found to be slightly lower in cases as compared to controls (P<0.001).
    [Show full text]
  • CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E
    Peer Reviewed PRACTICAL ONCOLOGY CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E. Burgess, DVM, Diplomate ACVIM (Oncology) Tufts University An insulinoma is a malignant pancreatic tumor that DIAGNOSIS inappropriately secretes excessive insulin, resulting in Aside from a histologic confirmation of insulinoma, profound hypoglycemia.1 no currently available diagnostic test provides a de- Pancreatic tumors are classified as: finitive diagnosis of insulinoma. Existing techniques • Exocrine, which includes adenocarcinomas of may help increase suspicion for an insulin-secreting ductular or acinar origin tumor but, with most diagnostic testing, it is im- • Endocrine, which arise from the islets of perative to interpret all results in the context of the Langerhans. coexisting clinical signs. Insulinomas are functional neuroendocrine tumors that originate in the beta cells of the islets Differential Diagnosis of Langerhans.1 A complete work-up, including careful patient history, physical examination, bloodwork, and PRESENTATION diagnostic imaging tests, should be performed to Signalment rule out other causes of hypoglycemia, such as Any breed of dog can be affected, but large sepsis, hepatic failure, adrenal cortical insufficiency, breeds tend to be overrepresented.1 While, in toxin ingestion, and other forms of neoplasia. humans, insulinomas affect females far more frequently than males, there is no apparent sex Laboratory Tests predilection in dogs.1-3 Dogs also commonly Blood Glucose present with a malignant variant, while humans A simple fasting blood glucose level of less than often have a benign adenoma (80%).1 Insulino- 40 mg/dL can suggest hyperinsulinemia, although ma is rare in cats.4 careful monitoring of a fasted dog with suspected insulinoma is strongly recommended due to high Clinical Signs risk for seizure activity.
    [Show full text]
  • HEMOCHROMATOSIS GENOTYPES and ELEVATED TRANSFERRIN SATURATION - Risk of Diabetes Mellitus, Hypertension,Cancer, and Total Mortality
    Doctor of Medical Science Thesis by Christina Ellervik MD, PhD HEMOCHROMATOSIS GENOTYPES AND ELEVATED TRANSFERRIN SATURATION - risk of diabetes mellitus, hypertension,cancer, and total mortality Aected Unaected Carrier Carrier Carrier Father Mother Aected Carrier Carrier Unaected Son Daughter Son Daughter Hemochromatosis genotypes and elevated transferrin saturation - risk of diabetes mellitus, hypertension,cancer, and total mortality Doctor of Medical Science Thesis by Christina Ellervik MD,PhD PhD The Faculty of Health and Medical Sciences at the University of Copenhagen has accepted this dissertation, which consists of the already published dissertations listed below, for pub- lic defence for the doctoral degree in medicine. Copenhagen, October 11th 2015 Ulla M. Wewer Head of Faculty Place and time for defence: St. Auditorium at Herlev Hospital, June 22nd 2016 at 2pm Table of Contents • Papers on which the thesis is based............................................................. 2 • Preface ............................................................................................................. 3 • Scope and delimitation of the thesis ...................................................... 3 - 4 • Introduction ............................................................................................ 4 - 14 Hereditary hemochromatosis ............................................................................................ 4 - 7 Diabetes mellitus (paper 1 and 2) .....................................................................................
    [Show full text]
  • The Acute Phase Response and Exercise: Court and Field Sports
    170 Br J Sports Med 2001;35:170–173 The acute phase response and exercise: court and Br J Sports Med: first published as 10.1136/bjsm.35.3.170 on 1 June 2001. Downloaded from field sports K E Fallon, S K Fallon, T Boston Abstract capacity, and transferrin, and transferrin satu- Objective—To determine the presence or ration.45 absence of an acute phase response after A number of studies have documented training for court and field sports. aspects of the acute phase response after exer- Participants—All members of the Aus- cise of a duration that would be expected to tralian women’s soccer team (n = 18) and induce significant damage to skeletal 6–12 all members of the Australian Institute of muscle. No data are available on the acute Sport netball team (n = 14). phase response in relation to court and field Methods—Twelve acute phase reactants sports. (white blood cell count, neutrophil count, Documentation of the extent and nature of platelet count, serum iron, ferritin, and the acute phase response to various types of transferrin, percentage transferrin satu- exercise is important, as changes related to the response may need to be taken into account for ration, á1 antitrypsin, caeruloplasmin, á2 acid glycoprotein, C reactive protein, and interpretation of haematological and biochemi- erythrocyte sedimentation rate) were cal measurements made during and after participation in sport. measured during a rest period and after The aim of this prospective study was there- moderate and heavy training weeks in fore to determine the presence or absence of members of elite netball and women’s the acute phase response in sports representa- soccer teams.
    [Show full text]
  • Elevated Serum Transferrin Saturation and Mortality
    Elevated Serum Transferrin Saturation and Mortality 1 Arch G. Mainous III, PhD ABSTRACT 1 James M. Gill, MD, MPH BACKGROUND A large proportion of US adults have elevated transferrin satura- Peter J. Carek, MD, MS2 tion, an indicator of a predisposition for iron overload. The purpose of this study was to evaluate the relationship between elevated serum transferrin saturation 1 Department of Family Medicine, Medical and mortality. University of South Carolina, Charleston, SC METHODS This cohort study was conducted using data from the First Health and 2Department of Family & Community Medicine, Christiana Care Health System, Nutrition Examination Survey I (1971–1974) (NHANES I) merged with the NHANES Wilmington, Del I Epidemiologic Followup Study (1992) (N = 10,714). We used SUDAAN and appro- priate weights to make population estimates for the adult US population (aged 25 to 74 years at baseline). All-cause mortality was evaluated in relation to serum transferrin saturation of greater than 45%, greater than 50%, greater than 55%, and greater than 60% using Cox proportional hazards regression. RESULTS In a Cox proportional hazards model controlling for potential confound- ers, including comorbid diseases, smoking, and cholesterol, all-cause mortality is signifi cantly greater for persons with a serum transferrin saturation of more than 55%, compared with those with saturations below this cutoff (hazards ratio [HR] =1.60, 95% confi dence interval [CI], 1.17-2.21). No one who died had hemochromatosis as any of the 20 listed causes of death. Many of the underlying causes of death for persons with serum transferrin saturation levels of more than 55% are common causes of death in the general population, although these per- sons were more likely to have died of cirrhosis and diabetes, a fi nding consistent with iron overload.
    [Show full text]
  • Comparative Evaluation of Fructosamine and Hba1c As a Marker of Glycemic Control in Type 2 Diabetes: a Hospital Based Study
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Comparative Evaluation of Fructosamine and HbA1c as a Marker of Glycemic Control in Type 2 Diabetes: A Hospital Based Study Dr. Jyoti Goyal1, Dr. Nibhriti Das2, Dr. Navin Kumar3, Ms. Seema Raghav4, Dr. Paramjeet Singh Bhatia5, Dr. Karunesh Prasad Singh6, Dr. Sabari Das7 1DNB, Department of Internal Medicine, Nayati Healthcare and Research Centre, Mathura, India- 281003, 2Ex-Director of Laboratory services and Additional Dean Research and Academics, Nayati Healthcare and Research Centre, Mathura, India- 281003, 3Ph.D, Biostatistitian, Department of Biostatistics, Nayati Healthcare and Research Centre, Mathura, India-281003. 4M.Sc., Certified Diabetes Educator, Department of Internal Medicine, Nayati Healthcare and Research Centre, Mathura, India-281003. 5MD, Department of Internal Medicine, Nayati Healthcare and Research Centre, Mathura, India-281003. 6MD Physician, Department of Internal Medicine, Nayati Healthcare and Research Centre, Mathura, India-281003. 7Department of Laboratory Medicine, Nayati Healthcare and Research Centre, Mathura, India- 281003, Corresponding Author: Dr. Jyoti Goyal ABSTRACT Introduction: Management of type 2 diabetes revolves around achievement of target glycemic control with the help of antidiabetic drugs or insulin. There are various markers for measurement of glyceamic control like HbA1c, Mean Blood Glucose and fructosamine levels. Though HbA1c is a well validated standard method for assessment of glycemic control but it has also got certain limitations. Fructosamine, a less explored method may be used as an alternative marker for an assessment of glycemic control in cases where HbA1c is unreliable or unavailable. The objective of this study is to compare the fructosamine levels with HbA1c in assessment of glycemic control in type 2 diabetics so as to assess the utility of fructosamine as an alternative marker for evaluation of glucose control.
    [Show full text]
  • K392-100 Total Iron-Binding Capacity (TIBC) and Serum Iron Assay Kit (Colorimetric)
    FOR RESEARCH USE ONLY! Total Iron-Binding Capacity (TIBC) and Serum Iron Assay Kit (Colorimetric) rev 08/19 (Catalog # K392-100; 100 assays; Store at -20°C) I. Introduction: BioVision’s TIBC and Serum Iron Assay Kit measures both Total iron-binding capacity (TIBC) and Serum iron. Those values indicate the requisite iron for transferrin saturation and Serum Iron respectively. In humans, Transferrin is a blood protein that binds and transports iron throughout the body. Iron bound to transferrin and not bound are reflected in the following: 1) Total Iron Binding Capacity, 2) Unbound Iron, 3) Transferrin Saturation Bound Iron, and 4) Free Iron. Those measurements can be used for to detect and monito transferrin saturation and also iron-deficiency anemia and chronic inflammatory diseases. Part A: TIBC Part B: Serum Iron 1 1 2 2 3 3 4 II. Application: Determination of TIBC, Unbound Iron, Transferrin Saturation, Serum Iron III. Sample Type: Serum or plasma. Serum-off-the clot is preferable to normal serum. IV. Kit Contents: Components K392-100 Cap Code Part Number TIBC Assay Buffer 25 ml WM K392-100-1 Iron Solution 100 µl Blue K392-100-2 TIBC Detector 2 x 1.5 ml Brown K392-100-3 TIBC Developer 5 ml NM K392-100-4 Iron Standard (100 mM) 100 µl Yellow K392-100-5 V. User Supplied Reagents and Equipment: • 96-well plate clear plate with flat bottom • Microplate reader capable of absorbance reading VI. Storage Conditions and Reagent Preparation: Store kit at -20°C, protected from light. Briefly centrifuge small vials prior to opening.
    [Show full text]
  • Gamma-Glutamyltransferase: a Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk
    Hindawi Publishing Corporation Disease Markers Volume 2015, Article ID 818570, 18 pages http://dx.doi.org/10.1155/2015/818570 Review Article Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk Gerald Koenig1,2 and Stephanie Seneff3 1 Health-e-Iron, LLC, 2800 Waymaker Way, No. 12, Austin, TX 78746, USA 2Iron Disorders Institute, Greenville, SC 29615, USA 3Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA Correspondence should be addressed to Gerald Koenig; [email protected] Received 2 July 2015; Accepted 20 September 2015 Academic Editor: Ralf Lichtinghagen Copyright © 2015 G. Koenig and S. Seneff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gamma-glutamyltransferase (GGT) is a well-established serum marker for alcohol-related liver disease. However, GGT’s predictive utility applies well beyond liver disease: elevated GGT is linked to increased risk to a multitude of diseases and conditions, including cardiovascular disease, diabetes, metabolic syndrome (MetS), and all-cause mortality. The literature from multiple population groups worldwide consistently shows strong predictive power for GGT, even across different gender and ethnic categories. Here, we examine the relationship of GGT to other serum markers such as serum ferritin (SF) levels, and we suggest a link to exposure to environmental and endogenous toxins, resulting in oxidative and nitrosative stress. We observe a general upward trend in population levels of GGT over time, particularly in the US and Korea. Since the late 1970s, both GGT and incident MetS and its related disorders have risen in virtual lockstep.
    [Show full text]
  • Differentiation of Iron Deficiency and the Anemia of Chronic Disease
    Differentiation of Iron Deficiency and the Anemia of Chronic Disease Danis J. Christensen, MD Salt Lake City, Utah The predictive value positive of serum iron studies and eryth­ rocyte indices in differentiating between iron deficiency ane­ mia and the anemia of chronic disease (ACD) were determined in 82 hospitalized patients with an iron-binding saturation of 15 percent or less. Iron deficiency, determined by serum ferritin of 20 ng/mL or less, was present in only 31 percent of patients with a serum iron level of 10 p-g/dL or less; 39 percent of patients with a transferrin saturation of 5 percent or less, and 54 percent of patients with a total iron-binding capacity (TIBC) of 350 /zg/dL or greater; conversely, iron deficiency was pres­ ent in only 3 percent of patients with a TIBC of 250 p,g/dL or less. Iron deficiency was present in 83 percent of patients with a mean corpuscular volume (MCV) of 75 /xm3 or less, but only 2 percent of patients with an MCV of 86 p,m3 or greater. It is concluded that the MCV has strong predictive value positive (and negative) when below (or above) the values just cited, but that serum iron studies do not have sufficient predictive value to justify their use in the routine differentiation between iron deficiency anemia and the ACD in hospitalized patients when no other cause for anemia is likely. One of the most frequent problems in the diag­ parameters commonly used to differentiate be­ nosis of anemia is the differentiation between tween the two conditions.
    [Show full text]
  • Serum Fructosamine and Subsequent Breast Cancer Risk: a Nested Case-Control Study in the ORDET Prospective Cohort Study
    Cancer Epidemiology, Biomarkers & Prevention 271 Short Communication Serum Fructosamine and Subsequent Breast Cancer Risk: A Nested Case-Control Study in the ORDET Prospective Cohort Study Mary Platek,1 Vittorio Krogh,6 Andrea Micheli,6 Richard Browne,5 Elisabetta Meneghini,6 Sabina Sieri,6 Holger J. Schu¨ nemann,2 Valeria Pala,6 Maddalena Barba,1 Gregory E. Wilding,3 Franco Berrino,6 and Paola Muti 4 Departments of 1Exercise and Nutrition Sciences, 2Medicine, 3Biostatistics, and 4Social and Preventive Medicine, 5Clinical Science Laboratory, University at Buffalo, State University of New York, Buffalo, New York; and 6Epidemiology Unit, Instituto Nazionale Per lo Studio e la Cura dei Tumori, Via Venezian, Milan, Italy Abstract There is evidence that abnormal glucose metabolism may follow-up, 144 breast cancer cases were identified and four contribute to the risk of breast cancer. The measurement of matched controls were selected from the cohort; serum markers of glucose metabolism could help to identify women fructosamine levels were measured in both groups at baseline. at risk for breast cancer. Serum fructosamine is one such Adjusted odds ratios (OR) for the highest tertile of serum marker. In this study, we investigated whether prediagnostic fructosamine compared to the lowest was 1.60 [95% con- serum fructosamine was associated with breast cancer. fidence interval (CI), 0.95-2.73]. In premenopausal women, the Between 1987 and 1992, 10,786 women ages 35 to 69 were OR was 1.58 (95% CI, 0.76-3.40) and in postmenopausal recruited in Italy for a prospective study. Women with a women, the OR was 1.60 (95% CI, 0.76-3.48).
    [Show full text]
  • Fructosamine Interpretive Summary
    Fructosamine Interpretive Summary Description: Fructosamine is a complex of glucose and protein that can be used to assess the average blood glucose concentration in a dog or cat over the previous 2-3 weeks. It is used in the diagnosis and management of diabetes mellitus. Decreased Fructosamine Common Causes Prolonged hypoglycemia o Insulin overdose o Insulinoma Decreased albumin (dog) or total protein (cat) Hyperthyroidism Uncommon Causes Increased serum triglycerides Azotemia Sample handling – storage at room temperature Related Findings Prolonged hypoglycemia o Insulinoma . Normal to increased serum insulin with concurrent decreased blood glucose . Increased insulin:glucose ratio . Pancreatic mass may be seen on ultrasound (cats>dogs) . A decreased fructosamine is not diagnostic for insulinoma but can increase clinical suspicion Hyperthyroidism o Increased T4, free T4 and free T4 by equilibrium dialysis Increased Fructosamine Common Causes Diabetes Mellitus Hemolysis (certain methodologies) Insulin overdose with Somogyi rebound effect Uncommon Causes Hypothyroidism Increased albumin (dog) or total protein (cat) Related Findings Diabetes Mellitus o Increased blood glucose o Glucose in urine +/- ketones Generated by VetConnect® PLUS: Fructosamine Page 1 of 2 Additional Information Physiology Fructosamine correlates with the patient’s average blood glucose concentration over the last 2-3 weeks. o Fructosamine is not affected by short-term increases in serum glucose such as those that occur with excitement, stress or intravenous dextrose administration. Fructosamine is a ketoamine that is formed by an irreversible, nonenzymatic linking of glucose to proteins (most often albumin and IgG). o Formation of fructosamine is related to the degree and duration of hyperglycemia. o Removal of fructosamine from the blood is dependent on the loss or degradation of the parent molecule (albumin).
    [Show full text]
  • Biological Activity of C-Peptide in Microvascular Complications of Type 1 Diabetes—Time for Translational Studies Or Back to the Basics?
    International Journal of Molecular Sciences Review Biological Activity of c-Peptide in Microvascular Complications of Type 1 Diabetes—Time for Translational Studies or Back to the Basics? Aleksandra Ryk 1 , Aleksandra Łosiewicz 1,2 , Arkadiusz Michalak 1,2 and Wojciech Fendler 1,* 1 Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; [email protected] (A.R.); [email protected] (A.Ł.); [email protected] (A.M.) 2 Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, 91-738 Lodz, Poland * Correspondence: [email protected]; Tel.: +48-42-272-53-85 Received: 18 November 2020; Accepted: 16 December 2020; Published: 20 December 2020 Abstract: People with type 1 diabetes have an increased risk of developing microvascular complications, which have a negative impact on the quality of life and reduce life expectancy. Numerous studies in animals with experimental diabetes show that c-peptide supplementation exerts beneficial effects on diabetes-induced damage in peripheral nerves and kidneys. There is substantial evidence that c-peptide counteracts the detrimental changes caused by hyperglycemia at the cellular level, such as decreased activation of endothelial nitric oxide synthase and sodium potassium ATPase, and increase in formation of pro-inflammatory molecules mediated by nuclear factor kappa-light-chain-enhancer of activated B cells: cytokines, chemokines, cell adhesion molecules, vascular endothelial growth factor, and transforming growth factor beta. However, despite positive results from cell and animal studies, no successful c-peptide replacement therapies have been developed so far. Therefore, it is important to improve our understanding of the impact of c-peptide on the pathophysiology of microvascular complications to develop novel c-peptide-based treatments.
    [Show full text]