Putting Linux on Your Motherboard

Total Page:16

File Type:pdf, Size:1020Kb

Putting Linux on Your Motherboard PROGRAMMING LinuxBIOS The LinuxBIOS project Putting Linux on your motherboard inuxBIOS releases yet another part If you haven’t come across the LinuxBIOS project [1] yet, you may be amazed at of your PC to Open Source software L– in this case, the BIOS chip itself. what it sets out to do. BY ANTONY STONE BIOS stands for Basic Input Output System, and the BIOS chip is installed on the motherboard by the manufacturer, and which most users, no matter which Operating System they run on their computer, hardly ever think about. They only ever see the BIOS screen when the machine is first booting up, and it is usually taken for granted as simply another piece of the hardware, which hardly anyone ever considers the idea of changing. The code inside the BIOS chip (which is simply a non-volatile memory device, so that the software is available immedi- ately the computer is powered on) is responsible for starting up the machine, checking for the presence of hardware such as memory and disk drives, and then initialising them so that the real operating system can start booting. Without the BIOS, your computer would be tedious and inconvenient, to say your own is whether your motherboard do absolutely nothing when it was the least. is compatible and supported. A very turned on, because the BIOS contains LinuxBIOS also provides a good wide range of motherboards, from an the very first instructions which the CPU amount of bootup diagnostic informa- impressive list of manufacturers, are executes in order to start everything tion on the system’s serial port, and supported by the LinuxBIOS project, and working. allows control of the bootup process your first step should be to check on the The LinuxBIOS project replaces the from a serial terminal as well. This can LinuxBIOS website to find out which normal BIOS code on your motherboard make debugging of hardware problems, models are likely to work. The most with the Linux kernel itself, so that your or reconfiguration of a system, much important requirement for a mother- machine boots instantly into Linux easier than the usual vendor-specific board to run LinuxBIOS is that it has a within seconds of turning it on. keyboard-and-screen method. BIOS chip which is removable from its LinuxBIOS has more advantages than This article shows you how to swap socket, since this is how you change the simply very fast boot times, however. your BIOS chip for LinuxBIOS, and physical chip containing the old BIOS LinuxBIOS has been mainly developed explains the detailed steps necessary to code for a larger capacity memory chip for cluster systems, because it allows compile the kernel and program the code containing the LinuxBIOS code. far greater remote management and into a LinuxBIOS chip. Note that since This article describes the PC-Chips’ configuration than a standard BIOS chip LinuxBIOS is still very much a work in M810LMR motherboard, which is a fairly does. If you have lots of servers progress, some details might have cheap but nicely integrated board, con- configured in a cluster, and you need changed since this article was written. taining on-board VGA, ethernet and to change a (normal) BIOS setting, then sound. However, the steps needed for going around connecting a screen and Hardware installing LinuxBIOS on any other sup- keyboard to each machine, rebooting The first thing to check if you’re plan- ported motherboard are very similar to and making a manual change can ning to create a LinuxBIOS system of those shown here. 76 March 2003 www.linux-magazine.com LinuxBIOS PROGRAMMING The other main item of hardware Note that, although it is possible to use required in order to create a working a “development system” for creating the LinuxBIOS system is the Disk-on-Chip LinuxBIOS code, programming this into memory device, which will be plugged the DoC, and then placing this into a into the BIOS socket on the mother- separate “target system” which will board, and which has the capacity actually run the code, it is in fact just as to contain the Linux kernel and the small simple, and more convenient, to use a amount of bootstrap code which single machine as both development and LinuxBIOS generates to initialize the target systems at the same time. It is motherboard hardware. assumed that you are already familiar Disk-on-Chip devices are memory with performing a basic Linux chips which can be “formatted” to appear installation on a machine, and that you like a hard disk device, and which can are comfortable with compiling a kernel contain a standard Linux filing system. and installing it. The steps involved in Figure 1:The ZIF socket plugged into the mother- The LinuxBIOS project uses the Disk-on- creating a LinuxBIOS machine are: board, with the original BIOS chip inserted Chip (DoC) to hold the bootup code, and •Install Linux on your target machine, also optionally a root filing system (so it including support for the flash DoC you can look underneath the ZIF socket is in fact possible to create a completely devices (which most kernels will not as you are inserting it. standalone diskless machine). have as standard) Once the ZIF socket is in place, lift the The specific DoC device used in this •Get the LinuxBIOS source code lever, insert the original BIOS chip (plac- project is the M-Systems’ MD-2800-D08 • Get the correct Linux kernel source, ing the notch or dot at the lever end of (part number MD-2802-D08 is a suitable patch it and build it the socket) and lower the lever to secure alternative as well). This device is an 8 • Configure and build the LinuxBIOS the chip in place. Then reassemble the megabyte flash-programmable device boot code for your motherboard motherboard into the case and power up which fits into the standard 32-pin •Get the Memory Technology Devices the system to make sure you get the socket used by the 2 megabit BIOS chip. (MTD) utilities and build the “erase” usual BIOS startup screen, confirming Note the slightly confusing contrast utility that the ZIF socket and BIOS chip are between the DoC devices, which are •Remove the BIOS chip from its socket correctly installed. measured in bytes, and the standard (with the power on!) and put a Disk- If you don’t already have Linux Flash Rom BIOS chips, which are on-Chip in its place installed on the machine, install a basic measured in bits. The DoC has a • Burn the LinuxBIOS image containing Linux system; note that you will require capacity 32 times that of the BIOS chip it the boot code and the kernel into the the usual development tools (compilers is replacing; the simple reason for this Disk-on-Chip etc.) for building your own kernel, and being that it is not possible to fit the •Hit reset to start the new LinuxBIOS you will also need to install Python, as Linux kernel into 2 megabits. system. this is used to create the configuration Finally, it is highly recommended that It is a good idea to plug the ZIF socket files used for LinuxBIOS. you obtain a 32-pin Zero Insertion Force into the motherboard, and then place the The first thing you should do after (ZIF) socket in order to make removal original BIOS chip into the ZIF socket in installing the basic system is compile the and insertion of the BIOS and DoC order to start the system up (Figure 1). kernel which will be used to create the devices simple and safe. Part of the Firstly, note the orientation of the BIOS LinuxBIOS system, so that it contains process for programming the code into chip in its socket (there is a notch at one support for MTD (Memory Technology the DoC device involves removing the end, or a dot in one corner, of the chip), Devices), which is unlikely to be standard BIOS chip and replacing it with remove the chip, and plug the ZIF socket included in a standard kernel. It is the DoC device – while the power is on into the motherboard socket. Place the important that you have support for and the motherboard is running. lever of the ZIF socket at the same end of loadable modules on the development Attempting this without the use of a ZIF the socket as the notch or dot was on the machine, since for programming the DoC socket is definitely not recommended. BIOS chip. device in the BIOS socket of the mother- You may need to bend the pins of board, it is necessary to run a command Getting started connectors nearby to get the ZIF socket before loading the DoC support modules, The first thing you should do is read the to fit – on the M810LMR there is an and therefore you cannot compile this LinuxBIOS FAQ, available from the web- unused 3-pin fan connector in the way. support directly into the kernel. site [1], and also the LinuxBIOS Make sure you plug the ZIF socket If you use make menuconfig to config- documentation for your chosen mother- cleanly into all 32 holes on the socket on ure your kernel, the additional options board, which in the case of the the motherboard – it’s easy to miss a you need to select (accurate for a 2.4.19 M810LMR being used here, is based couple of pins at one end and get the kernel) in order to build LinuxBIOS into around the SiS630 chipset. The FAQ whole thing moved along one place.
Recommended publications
  • Boot Mode Considerations: BIOS Vs UEFI
    Boot Mode Considerations: BIOS vs. UEFI An overview of differences between UEFI Boot Mode and traditional BIOS Boot Mode Dell Engineering June 2018 Revisions Date Description October 2017 Initial release June 2018 Added DHCP Server PXE configuration details. The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property of their respective owners. Published in the USA [1/15/2020] [Deployment and Configuration Guide] [Document ID] Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice. 2 : BIOS vs. UEFI | Doc ID 20444677 | June 2018 Table of contents Revisions............................................................................................................................................................................. 2 Executive Summary ............................................................................................................................................................ 4 1 Introduction ..................................................................................................................................................................
    [Show full text]
  • VIA RAID Configurations
    VIA RAID configurations The motherboard includes a high performance IDE RAID controller integrated in the VIA VT8237R southbridge chipset. It supports RAID 0, RAID 1 and JBOD with two independent Serial ATA channels. RAID 0 (called Data striping) optimizes two identical hard disk drives to read and write data in parallel, interleaved stacks. Two hard disks perform the same work as a single drive but at a sustained data transfer rate, double that of a single disk alone, thus improving data access and storage. Use of two new identical hard disk drives is required for this setup. RAID 1 (called Data mirroring) copies and maintains an identical image of data from one drive to a second drive. If one drive fails, the disk array management software directs all applications to the surviving drive as it contains a complete copy of the data in the other drive. This RAID configuration provides data protection and increases fault tolerance to the entire system. Use two new drives or use an existing drive and a new drive for this setup. The new drive must be of the same size or larger than the existing drive. JBOD (Spanning) stands for Just a Bunch of Disks and refers to hard disk drives that are not yet configured as a RAID set. This configuration stores the same data redundantly on multiple disks that appear as a single disk on the operating system. Spanning does not deliver any advantage over using separate disks independently and does not provide fault tolerance or other RAID performance benefits. If you use either Windows® XP or Windows® 2000 operating system (OS), copy first the RAID driver from the support CD to a floppy disk before creating RAID configurations.
    [Show full text]
  • Custom X86 Hardware and Embedded BIOS™ Design Note #3
    Custom x86 Hardware Design Note #3 and Embedded BIOS™ Orchid Technologies Engineering and Consulting, Inc. Orchid excels at providing deeply embedded customized x86 personal computer product designs. Orchid offers rapid hardware development using processor technology from Intel, AMD, Cyrix, and ST-Microelectronics. Orchid embedded designs are customized to suite your feature set, packaging, power and unit cost requirements. Select from a wide variety of peripheral options. Orchid reduces product cost by redesigning older multi-board systems into new single board embedded x86 architectures. Among our successes are: • Celeron Telephony Switch • Pentium II Gaming Motherboard • Pentium II/440BX Raid Controller • Multiprocessor Simulation Engine • Pentium Set Top Box • Mobile Module Based Kiosk • Celeron MP3 Audio Server • Elan SC400 Ruggedized SBC • 386EX Voice/FAX Mail System • Elan SC400 Low Cost Alarm CPU General Software Embedded BIOS™ Embedded BIOS is selected as the BIOS of preference for boards from many of the industry’s most important manufacturers including Intel, AMD, Cyrix and ST- Microelectronics. Embedded BIOS is a full-featured BIOS for x86-based handheld, Orchid Technologies’ unparalleled embedded and volume consumer electronics applications. With over 400 source- experience and its close partnership level configuration options, Embedded BIOS is the most configurable BIOS in with General Software make it the world. Your design can include built-in support for ROM Disks, RAM Disks, the ideal choice for custom x86 Resident Flash Disks (RFD), power management, LCD Panel drivers, console hardware design. redirection, Windows CE-launcher, configurable Setup Screen, and much more. Technology Partnership As a General Software Technology Partner, Orchid Technologies Engineering and Consulting, Inc.
    [Show full text]
  • BIOS Update/Crisis Disk for BEETLE with I815 Standard Motherboard (D2/D2*) Release "WN STD 0B/22"
    README.PDF 17.12.2003 BIOS update/crisis disk for BEETLE with i815 standard motherboard (D2/D2*) release "WN STD 0B/22" Contents of DOWNLOAD.ZIP: D2UPDATE0B22ARJ.EXE Selfextracting archive of flash update disk for MS-DOS Needs a prepared bootable floppy or MemCard D2UPDATE0B22IMG.EXE Directly creates a bootable flash update disk on 1,44MB/3,5" floppy. To be used with Windows only. D2UPDATE0B22DD.BIN Floppy image file of flash update disk for Linux; to be extracted by: "dd if=filename of=/dev/fd0" D2CRISIS0B22ARJ.EXE Selfextracting archive of flash crisis disk for MS-DOS Needs a prepared bootable floppy or MemCard D2CRISIS0B22IMG.EXE Directly creates a bootable flash crisis disk on 1,44MB/3,5" floppy To be used with Windows only. D2CRISIS0B22DD.BIN Floppy image file of flash crisis disk for Linux; to be extracted by: "dd if=filename of=/dev/fd0" README.HTM This information Please read these remarks first, before downloading and extracting ZIP file ... This release is not valid for D2 basic motherboard ! THIS RELEASE IS NEEDED, IF YOU WANT TO PERFORM AUTOMATIC UPDATE OF BEETLE BIOS RELEASES OVER INTERNET. The in future (higher than 0B/22) BIOS releases of D2 STD BIOS will also be available as an BEETLE VIEW update package, provided in www - you need to update to this release before! Some new features of the update procedure (UPBIOS.EXE) rel. 3.1: If any of these advanced features is wanted, you need to adapt the update floppy disk! See chapter "How to use flashtool UPBIOS.EXE" for further information about options.
    [Show full text]
  • Multiprocessor Initialization of INTEL SOC in Coreboot
    Multiprocessor Initialization OF INTEL SOC in Coreboot Pratik Prajapati ([email protected]) Subrata Banik ([email protected]) 1 Agenda • Intel Multiple Processor (MP) Initialization • Coreboot + Intel FSP Boot Flow • Problem with existing model • Solution space • Design • Future Scope 2 Intel Multiple Processor (MP) Initialization • The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor (MP) initialization protocol called the Multiprocessor Specification Version 1.4. • The MP initialization protocol has the following important features: • It supports controlled booting of multiple processors without requiring dedicated system hardware. • It allows hardware to initiate the booting of a system without the need for a dedicated signal or a predefined boot processor. • It allows all IA-32 processors to be booted in the same manner, including those supporting Intel Hyper-Threading Technology. • The MP initialization protocol also applies to MP systems using Intel 64 processors. • Entire CPU multiprocessor initialization can be divided into two parts – BSP (Boot Strap Processor) Initialization – AP (Application Processor) Initialization Reference: Intel SDM Multiple Processor Init - section 8.4 3 Coreboot + Intel FSP (Firmware support package) Boot Flow Coreboot/BIOS FSP * Coreboot uses its own temp ram init code. 4 Problem Statement with existing model • Background: Coreboot is capable enough to handle multiprocessor initialization on IA platforms. So ideally, CPU features programming can be part of Coreboot MP Init sequence. • But, there might be some cases where certain feature programming can't be done with current flow of MP init sequence. Because, Intel FSP-S has to program certain registers to meet silicon init flow due to SAI (Security Attributes of Initiator) and has to lock other registers before exiting silicon init API.
    [Show full text]
  • Chapter 3. Booting Operating Systems
    Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs.
    [Show full text]
  • Intel® Desktop Boards BIOS Settings Dictionary – Alphabetical the BIOS
    BIOS Settings Dictionary – Alphabetical Intel® Desktop Boards BIOS Settings Dictionary – Alphabetical The BIOS Setup program can be used to view and change the BIOS settings for the computer. The BIOS Setup program is accessed by pressing the <F2> key after the Power-On Self-Test (POST) memory test begins and before the operating system boot begins. The following menus are available: Menu Title Purpose Maintenance Clears passwords and displays processor information. The maintenance menu is displayed only when the Desktop Board is in Configure Mode. Manageability Configure options associated with Intel® Platform Administration Technology. Main Displays processor and memory configuration. Advanced Configures advanced features available through the chipset. Security Sets passwords and security features. Power Configures power management features and power supply controls. Boot Selects boot options. Intel® ME Configures options for the Intel® Management Engine and Intel® Active Management Technology. Exit Saves or discards changes to Setup program options. The presence of menus and BIOS settings are dependent on your board model, hardware components installed, and the BIOS version. BIOS menu titles may differ. If any problems occur after making BIOS settings changes (poor performance, intermittent issues, etc.), reset the desktop board to default values: 1. During boot, enter the BIOS setup by pressing F2. 2. Press F9 to set defaults. 3. Press F10 to Save and Exit. If the system locks or won’t boot after making BIOS settings changes, perform
    [Show full text]
  • Coreboot - the Free Firmware
    coreboot - the free firmware vimacs <https://vimacs.lcpu.club> Linux Club of Peking University May 19th, 2018 . vimacs (LCPU) coreboot - the free firmware May 19th, 2018 1 / 77 License This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. You can find the source code of this presentation at: https://git.wehack.space/coreboot-talk/ . vimacs (LCPU) coreboot - the free firmware May 19th, 2018 2 / 77 Index 1 What is coreboot? History Why use coreboot 2 How coreboot works 3 Building and using coreboot Building Flashing 4 Utilities and Debugging 5 Join the community . vimacs (LCPU) coreboot - the free firmware May 19th, 2018 3 / 77 Index 6 Porting coreboot with autoport ASRock B75 Pro3-M Sandy/Ivy Bridge HP Elitebooks Dell Latitude E6230 7 References . vimacs (LCPU) coreboot - the free firmware May 19th, 2018 4 / 77 1 What is coreboot? History Why use coreboot 2 How coreboot works 3 Building and using coreboot Building Flashing 4 Utilities and Debugging 5 Join the community . vimacs (LCPU) coreboot - the free firmware May 19th, 2018 5 / 77 What is coreboot? coreboot is an extended firmware platform that delivers a lightning fast and secure boot experience on modern computers and embedded systems. As an Open Source project it provides auditability and maximum control over technology. The word ’coreboot’ should always be written in lowercase, even at the start of a sentence. vimacs (LCPU) coreboot - the free firmware May 19th, 2018 6 / 77 History: from LinuxBIOS to coreboot coreboot has a very long history, stretching back more than 18 years to when it was known as LinuxBIOS.
    [Show full text]
  • BIOS Boot Specification
    Compaq Computer Corporation Phoenix Technologies Ltd. Intel Corporation BIOS Boot Specification Version 1.01 January 11, 1996 This specification has been made available to the public. You are hereby granted the right to use, implement, reproduce, and distribute this specification with the foregoing rights at no charge. This specification is, and shall remain, the property of Compaq Computer Corporation (“Compaq”), Phoenix Technologies Ltd (“Phoenix”), and Intel Corporation (“Intel”). NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY REPRESENTATION OR WARRANTY REGARDING THIS SPECIFICATION OR ANY PRODUCT OR ITEM DEVELOPED BASED ON THIS SPECIFICATION. USE OF THIS SPECIFICATION FOR ANY PURPOSE IS AT THE RISK OF THE PERSON OR ENTITY USING IT. COMPAQ, PHOENIX AND INTEL DISCLAIM ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND FREEDOM FROM INFRINGEMENT. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, NEITHER COMPAQ, PHOENIX NOR INTEL MAKE ANY WARRANTY OF ANY KIND THAT ANY ITEM DEVELOPED BASED ON THIS SPECIFICATION, OR ANY PORTION OF IT, WILL NOT INFRINGE ANY COPYRIGHT, PATENT, TRADE SECRET OR OTHER INTELLECTUAL PROPERTY RIGHT OF ANY PERSON OR ENTITY IN ANY COUNTRY. Table of Contents 1.0 INTRODUCTION 5 1.1 REVISION HISTORY 5 1.2 RELATED DOCUMENTS 5 1.3 PURPOSE 5 1.4 TERMS 6 2.0 OVERVIEW 9 2.1 DESCRIPTION 9 3.0 IPL DEVICES 10 3.1 REQUIREMENTS FOR IPL DEVICES 10 3.1.1 IPL TABLE 10 3.1.2 PRODUCT NAME STRING 11 3.2 BAIDS 11 3.3 DEVICES WITH PNP EXPANSION HEADERS
    [Show full text]
  • Ubuntu Linux Setup Guide
    Ubuntu Linux Setup Guide For ThinkStation P330 Official Support of Ubuntu 16.04.5 and later Section 1 - BIOS Setup and Pre-Installation Steps The first step before installing Linux is to make sure BIOS is setup correctly • For UEFI/GPT Installations (Recommended): o Boot into BIOS by pressing the F1 function key at the “Lenovo” splash screen o Tab over to the Exit menu tab, and set OS Optimized Defaults to Enabled o Select “Yes” at the confirmation screen indicated below o Tab over to the Security menu tab, select Secure Boot, and set the option to Disabled o Press F10 to “Save and Exit” the BIOS setup menu o Insert the Ubuntu install media (either through USB or CD/DVD) o Power on the system and press the F12 function key whenever the following Lenovo splash screen appears o Select the Linux bootable installation media UEFI option from the F12 boot menu • For Legacy/MBR installations (not recommended): o Boot into BIOS by pressing the F1 function key at the “Lenovo” splash screen o Tab over to the Exit menu tab, and set OS Optimized Defaults to Disabled o Select “Yes” at the confirmation screen indicated below o Select F10 to “Save and Exit” BIOS o Insert the Ubuntu installation media (either through USB or CD/DVD) o Power on the system and press the F12 function key whenever the following Lenovo splash screen appears o Select the Linux bootable installation media Legacy option from the F12 boot menu Section 2 – Installing Ubuntu 16.04 LTS Please refer to the following instructions and screenshots on how to install Ubuntu 16.04 LTS on
    [Show full text]
  • Hardware Components and Internal PC Connections
    Technological University Dublin ARROW@TU Dublin Instructional Guides School of Multidisciplinary Technologies 2015 Computer Hardware: Hardware Components and Internal PC Connections Jerome Casey Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/schmuldissoft Part of the Engineering Education Commons Recommended Citation Casey, J. (2015). Computer Hardware: Hardware Components and Internal PC Connections. Guide for undergraduate students. Technological University Dublin This Other is brought to you for free and open access by the School of Multidisciplinary Technologies at ARROW@TU Dublin. It has been accepted for inclusion in Instructional Guides by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Higher Cert/Bachelor of Technology – DT036A Computer Systems Computer Hardware – Hardware Components & Internal PC Connections: You might see a specification for a PC 1 such as "containing an Intel i7 Hexa core processor - 3.46GHz, 3200MHz Bus, 384 KB L1 cache, 1.5MB L2 cache, 12 MB L3 cache, 32nm process technology; 4 gigabytes of RAM, ATX motherboard, Windows 7 Home Premium 64-bit operating system, an Intel® GMA HD graphics card, a 500 gigabytes SATA hard drive (5400rpm), and WiFi 802.11 bgn". This section aims to discuss a selection of hardware parts, outline common metrics and specifications
    [Show full text]
  • 1 Configuring SATA Controllers A
    RAID Levels RAID 0 RAID 1 RAID 5 RAID 10 Minimum Number of Hard ≥2 2 ≥3 ≥4 Drives Array Capacity Number of hard Size of the smallest (Number of hard (Number of hard drives * Size of the drive drives -1) * Size of drives/2) * Size of the smallest drive the smallest drive smallest drive Fault Tolerance No Yes Yes Yes To create a RAID set, follow the steps below: A. Install SATA hard drive(s) in your computer. B. Configure SATA controller mode in BIOS Setup. C. Configure a RAID array in RAID BIOS. (Note 1) D. Install the SATA RAID/AHCI driver and operating system. Before you begin, please prepare the following items: • At least two SATA hard drives or M.2 SSDs (Note 2) (to ensure optimal performance, it is recommended that you use two hard drives with identical model and capacity). (Note 3) • A Windows setup disk. • Motherboard driver disk. • A USB thumb drive. 1 Configuring SATA Controllers A. Installing hard drives Connect the SATA signal cables to SATA hard drives and the Intel® Chipset controlled SATA ports (SATA3 0~5) on the motherboard. Then connect the power connectors from your power supply to the hard drives. Or install your M.2 SSD(s) in the M.2 connector(s) on the motherboard. (Note 1) Skip this step if you do not want to create RAID array on the SATA controller. (Note 2) An M.2 PCIe SSD cannot be used to set up a RAID set either with an M.2 SATA SSD or a SATA hard drive.
    [Show full text]