Industrial Production of L-Alanine from Ammonium Fumarate Using Immobilized Microbial Cells of Two Kinds

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Production of L-Alanine from Ammonium Fumarate Using Immobilized Microbial Cells of Two Kinds INDUSTRIAL PRODUCTION OF L-ALANINE FROM AMMONIUM FUMARATE USING IMMOBILIZED MICROBIAL CELLS OF TWO KINDS Satoru TAKAMATSU,Tetsuya TOSA and Ichiro CHIBATA Research Laboratory of Applied Biochemistry, Tanabe Seiyaku Co., Ltd., Osaka 532 Key Words: Biochemical Engineering, Immobilized Microbial Cell, L-Alanine Production, Sequential EnzymeReaction, Immobilized Escherichia coli, Immobilized Pseudomonas dacunhae Rate equations were derived for a two-step enzymereaction whichproducedL-alanine from ammoniumfumarate via L-aspartic acid by aspartase of immobilized Escherichia coli cells and L-aspartate /?-decarboxylase of immobilized Pseudomonas dacunhae cells. To establish an efficient system for industrial production of L-alanine, we investigated the design of adequate bioreactors on the basis of the simulation of this sequential reaction by solving the simultaneous equations derived. As a result, L-alanine was found to be produced efficiently by use of two sequential column reactors: a conventional column reactor containing immobilized E. coli cells and a closed column reactor containing immobilized P. dacunhae cells. To develop the most suitable production system for Introduction L-alanine, rate equations of aspartase and L-aspartate L-Alanine had been produced from L-aspartic acid /?-decarboxylase reactions should be obtained, and a by a batch enzymatic method, using the activity of l- strategy for operation should be mathematically de- aspartate /?-decarboxylase of intact Pseudomonas dac- termined using these equations. In the previous unhae cells.1} Since 1982, however, Tanabe Seiyaku papers,1143'14) rate equations were derived for as- Co., Ltd. has been producing L-alanine from am- partase reaction of E. coli cells immobilized within moniumfumarate via L-aspartic acid by the con- polyacrylamide gel and the strategy for operation tinuous column reaction system, using the aspartase was proposed using the rate equations. activity of immobilized Escherichia coli cells and l- In the present work, the rate equation was modified aspartate /?-decarboxylase activity of immobilized P. for aspartase in the sequential two-step reaction, and dacunhae cells.9) a rate equation was derived for L-aspartate /?-de- These reactions proceed as follows: carboxylase of immobilized P. dacunhae cells in the (aspartase) two-step reaction. Furthermore, we simulated this Fumaric acid+NH3<( åºl-Aspartic acid L-aspartate sequential reaction of L-alanine production from am- #-decarboxylase moniumfumarate by means of numerical analysis, and designed an industrial production system for l- åºl-Alanine + CO2 alanine. In the previous paper,10) we studied the conditions for production of L-alanine from ammonium fu- 1. Experimental marate via L-aspartic acid in a single-batch reactor 1.1 Materials using a mixture of immobilized E. coli cells and K>Carrageenanwas purchased from Sansho Co., immobilized P. dacunhae cells, and coimmobilized E. Ltd., Osaka. Pyridoxal-5'-phosphate (PLP) was pur- coli-P. dacunhae cells. chased from Kyowa Hakko Co., Ltd., Tokyo, and As a result, the productivity of L-alanine by the other reagents were purchased from Katayama mixture of the two kinds of immobilized microbial Kagaku Co., Ltd., Osaka. cells was found to be superior to that by the coim- 1.2 Preparation of immobilized microbial cells mobilized microbial cells. Further, L-alanine was 1) Immobilized E. coli cells As described in the found to be most efficiently produced when the previous paper,10) E. coli EAPc-77) having higher reaction started at pHaround 8. aspartase activity, a kind of mutant of E. coli ATCC Received April 1 1, 1985. Correspondence concerning this article should be addressed 1 1 303, was cultivated, pH-treated12) and immobilized to S. Takamatsu. with K-carrageenan. The resulting gels were suspen- VOL 19 NO. 1 1986 31 ded in 0.2 kmol-m 3 acetate buffer (pH 5.0) contain- dStV^UK'.+ l^ -So} (1) ing 10 mol-m"3 L-aspartic acid and 2% KC1 at 37°C dt (K'e+\)Sx-S0+KmlK'e for 24h for activation, and washed thoroughly with 2% KC1 solution. ^i = ^*iSr7exp(-3140/r+ 10.13) (2) 2) Immobilized P. dacunhae cells As described in the previous paper,10) P. dacunhae IAM 1152 was *:ml = o.68sr4 (3) cultivated, pH-treated, glutaraldehyde-treatedn) and K'e= -(3.603^0-0.284)7+1200S0-78 (4) immobilized with /c-carrageenan. The resulting gels On the basis of the assumption that these equations were suspended in 0.2 kmol-m~3 acetate buffer (pH could be adapted to aspartase reaction of E. coli cells 5.0) containing 10 mol*m~3 L-aspartic acid, 1 mol- immobilized with K-carrageenan, Eq. (1) was ex- m~3 PLP and 2% KC1 at 37°C for 24h for acti- vation, and washed thoroughly with 2% KC1 tended as follows, considering the shift of the equilib- solution. rium of aspartase towards L-aspartic acid formation 1.3 Measurement of kinetic constants of aspartase caused by the coexistent L-aspartate /?-decarboxylase: reaction dS, V^K'e+DSt-So+P} (5) Kml, Vml and Ke of aspartase reaction were de- At (K;+l)S1-S0+KmlK' termined at pH 6-9 using the methods described in the previous paper.13) As Eq. (1) was derived at pH 8.5, effects of pH on 1.4 Assay of L-aspartate /?-decarboxylase activity K*l9 Kmland K'e were examined to extend Eqs. (2), Ten milliliters of various substrate solutions (pH (3) and (4) to the two-step reaction. K*x and Kml were 5.5-9.0) consisting of 0.01-2kmol-m~3 ammonium found to be represented as an exponential function of L-aspartate, 0-2kmol-m~3 L-alanine, 0-0.5 kmol- pH by the following equations. m~3ammoniumfumarate, l mol-m~3 pyruvic acid K*1=exp(10.271npH-21.98+lnF*1*) (6) and 0.1 mol-m~3 PLP was added to 1g of immobi- J£ml =exp(0.816pH -7.322) (7) lized P. dacunhae cells, and the mixture was shaken in a 100-ml Erlenmeyer flask at 30-45°C for 0.5-1 h. Further, Ke value was found to increase linearly After removal of the immobilized cells by filtration, against pH, and its coefficient of correlation was the amount of L-alanine formed was determined by independent of So and temperature. For example, K'e bioassay with Leuconostoc citrovorum ATCC8801.8) was represented as Eq. (8) at 1 kmol-m~3 of So and 1.5 Batch reaction using two kinds of immobilized 37°C. microbial cells Twenty milliliters of 1.2 kmol-m""3 ammonium K'e=7.52pH+29.2 (8) fumarate (pH 8) containing 1 mol-m"3 Mg2+, 1 In addition, effects of L-alanine, pyruvic acid and mol-m~3 pyruvic acid and 0.1 mol-m~3 PLP was PLPon aspartase activity were tested, because these added to a mixture of 0.5 or l.Og of immobilized E. materials were not involved in a substrate solution for coli cells and 4.5 or 4.0g of immobilized P. dacunhae conventional aspartase reaction but were involved in cells, and the mixture was incubated in a 100-ml reaction mixture of L-aspartate /?-decarboxylase. The Erlenmeyer flask at 37°C for 8h with shaking. aspartase activity was found not to be affected by Samples were removedat appropriate intervals from these materials. Consequently, the aspartase activity the reaction mixture for analysis. Remaining fumaric of immobilized E. coli cells in the two-step reaction is acid was spectrophotometrically determined2) and l- represented by Eqs. (5), (9), (10) and (ll). aspartic acid was determined by bioassay with Fml =^-77 exp(-3140/r+ 10.13) Leuconostoc mesenteroides P-60.4) xexp(10.271npH-21.98+ln K*f) (9) 2. Results and Discussion iCml = S'S-O4exp(0.816pH -7.322) (10) 2.1 Kinetics of aspartase reaction of immobilized E. coli cells ^=7.52pH-(3.603S0-0.284)r The simplified equation of the two-step enzyme +1200^0-141.9 (ll) reaction described in this paper was represented as follows: where Eqs. (9), (10) and (ll) were obtained by L-aspartate combination ofEqs. (2) and (6), Eqs. (3) and (7), and aspartase ^-decarboxylase Eqs. (4) and (8), respectively. S\< >$2 *P 2.2 Kinetics of L-aspartate /f-decarboxylase reaction Aspartase activity of E. coli cells immobilized with of immobilized P. dacunhae cells polyacrylamide was represented by the following To obtain the rate equation of L-aspartate /?- equations13): decarboxylase activity of immobilized P. dacunhae 32 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN cells, effects of L-aspartic acid, L-alanine and fumaric acid on its activity were examined at various pH. The L-aspartate j8-decarboxylase activity was found to be inhibited by L-aspartic acid (Fig. 1). The inhibition constant was calculated to be 8.9 kmol-m"3. The inhibition constant was further examined in the hig- her pHregion, and was found to be represented as follows: A:/2 =exp(-0.7535pH+6.721) (12) Fig. 1. Effect of substrate concentration on L-aspartate /?- Lineweaver-Burk plots of L-aspartate /?-decarbox- decarboxylase activity of immobilized P. dacunhae cells (pH ylase activity of immobilized P. dacunhae cells were 6). obtained at pH 6.0 (Fig. 2), and the Michaelis con- stant was calculated to be 0.055 kmol- m"3. However, Michaelis constants in the higher pH region could not be obtained because of concave Lineweaver-Burk plots. Therefore, the Michaelis constant obtained at pH6.0 was used for further simulation. Km2 =0.055 (13) Furthermore, L-aspartate /?-decarboxylase activity of immobilized P. dacunhae cells was found to be competitively inhibited by fumaric acid, and the inhibition constant was calculated to be 1 kmol-m~3 at pH 6-9 (Fig. 3). Therefore, Eq. (14) was used for further simulation.
Recommended publications
  • Hyperbranched Polyaspartate Esters and a Process for Their Preparation
    Europäisches Patentamt *EP000743335B1* (19) European Patent Office Office européen des brevets (11) EP 0 743 335 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C08G 63/685 of the grant of the patent: 26.09.2001 Bulletin 2001/39 (21) Application number: 96107069.5 (22) Date of filing: 06.05.1996 (54) Hyperbranched polyaspartate esters and a process for their preparation Hyperverzweigte Polyaspartatester und Verfahren zu ihrer Herstellung Ester de polyaspartate hyperramifiés et procédé pour leur préparation (84) Designated Contracting States: (74) Representative: Pettrich, Klaus-Günter, Dr. AT BE CH DE ES FR GB IT LI NL SE c/o Bayer AG, Konzernbereich RP (30) Priority: 18.05.1995 US 443505 Patente und Lizenzen 51368 Leverkusen (DE) (43) Date of publication of application: 20.11.1996 Bulletin 1996/47 (56) References cited: US-A- 5 126 170 (73) Proprietor: Bayer Corporation Pittsburgh, PA 15205-9741 (US) • ISRA L JOURNAL OF CHEMISTRY, vol. 9, 1971, JERUSALEM, pages 105-109, XP000670606 A. (72) Inventors: SINGERMAN ET AL.: "Poly threo-beta-hydroxy • Yeske, Philip E. aspartic acid" Pittsburgh, PA 15228 (US) • Gindin, Lyuba K. Remarks: Pittsburgh, PA 15216 (US) The file contains technical information submitted • Wicks, Douglas A. after the application was filed and not included in this Mt. Lebanon, PA 15228 (US) specification • Jonsson, E. Haakan Coraopolis, PA 15108 (US) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Profiling Taste and Aroma Compound Metabolism During Apricot Fruit Development and Ripening
    Int. J. Mol. Sci. 2016, 17, 998; doi:10.3390/ijms17070998 S1 of S4 Supplementary Materials: Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening Wanpeng Xi, Huiwen Zheng, Qiuyun Zhang and Wenhui Li Figure S1. Sugars HPLC chromatogram of apricot fruit. Peaks (1) Fructose (2) Glucose (3) Sucrose. (a) sugars mixture standards; (b) sugars for SG peel of S5; (c) sugars for SG pulp of S5. Int. J. Mol. Sci. 2016, 17, 998; doi:10.3390/ijms17070998 S2 of S4 Figure S2. Organic acids HPLC chromatogram of apricot fruit. Peaks (1) oxalic acid (2) tartaric acid (3) quininic acid (4) malic acid (5) citric acid (6) fumaric acid. (a) organic acids mixture standard; (b) organic acid for YC peel of S4; (c) organic acid for YC pulp of S4. Int. J. Mol. Sci. 2016, 17, 998; doi:10.3390/ijms17070998 S3 of S4 Table S1. Chroma values of apricot fruit during development and ripening. L* a* b* C* H Cultivars S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 DX 54.52 57.13 61.56 62.61 55.49 20.28 18.13 14.41 8.87 17.97 39.02 37.67 38.27 39.99 43.83 43.98 42.27 41.06 42.26 47.67 117.46 116.92 110.21 76.26 67.36 HY 54.97 55.83 61.53 65.08 65.11 −16.04 −14.77 −13.30 11.01 12.78 34.44 31.68 32.74 38.82 42.51 37.99 34.84 35.35 52.69 45.14 114.91 114.94 112.05 72.65 72.57 KE 47.02 47.00 48.32 60.11 60.66 −17.08 −17.37 −16.65 −0.36 8.20 30.83 29.09 29.08 48.23 48.48 35.26 33.88 33.51 48.33 49.33 118.94 120.86 119.85 90.67 118.02 AK 50.02 50.90 52.19 68.35 60.28 −21.98 −21.76 −19.02 -4.97 4.04 40.07 39.12 35.71
    [Show full text]
  • 136757A0.Pdf
    NOVEMBER 9, 1935 NATURE 757 quantitatively by the aspartase enzyme, and identified Using the ordinary technique, we have examined qualitatively in the form of the copper salt. Approxi­ specimens of purified l-fructose and l-arabinose, and mately the other half of the nitrogen ( 40-50 per cent) in neither event have we been able to detect the is precipitable by phosphotungstic acid. Since slightest reducing action on Tillmans's reagent. We cystine, arginine, histidine and aromatic amino acids have no explanation to offer of Jonnissian's results, are absent, it is probable that this fraction consists but we thought it might be of interest to publish of lycine. Further work is in progress to determine the above facts, in case that author's statements the nature of the compounds precipitated by phospho­ should lead other workers to under-value what has tungstic acid. come to be recognised as an extremely useful reagent. In an earlier paper1, it was mentioned that aspartic A. L. BACHARACH. acid is not present in the amino acid mixture. This H. E. GLYNN. erroneous conclusion is ascribable to the fact that, Glaxo Laboratories, Ltd., owing to the small amount of material available, the 56 Osnaburgh Street, determination was made from the solution from London, N.W.l. which ammonia had first been distilled off according Oct. 18. to van Slyke, in which process aspartic acid seems to • Proc. 6th Caw,. Cong. Phys. Pharm. Bio., Academy of Sciences be precipitated as a calcium salt. Press, Moscow and Leningrad, 101; 1935. The composition of the excreted amino acid mixture is very interesting in several respects.
    [Show full text]
  • Strecker Degradation Products of Aspartic and Glutamic Acids and Their Amides
    Czech J. Food Sci. Vol. 19, No. 2: 41–45 Strecker Degradation Products of Aspartic and Glutamic Acids and their Amides JAN RÖSSNER, JAN VELÍEK, FRANTIEK PUDIL and JIØÍ DAVÍDEK Institute of Chemical Technology Department of Food Chemistry and Analysis, Prague, Czech Republic Abstract RÖSSNER J., VELÍEK J., PUDIL F., DAVÍDEK J. (2001): Strecker degradation products of aspartic and glutamic acids and their amides. Czech J. Food Sci., 19: 4145. Aspartic and glutamic acids, asparagine and glutamine were oxidised with either potassium peroxodisulphate or glyoxal. Non- volatile products were derivatised and analysed by GC/FID and GC/MS. Volatile reaction products were isolated and analysed by the same methods. It was found that the degradation reactions of amino acids are complex. Amino acids are principally degraded via the corresponding α-keto acids to Strecker aldehydes (aspartic acid to oxalacetic and 3-oxopropionic acids and glutamic acid to α-ketoglutaric and 4-oxobutyric acids), which are unstable and decomposed by decarboxylation to the corresponding alde- hydes. Aspartic acid also eliminates ammonia and yields fumaric acid whereas glutamic acid gives rise to an imine, pyroglutamic acid. A recombination of free radicals leads to dicarboxylic acids (succinic acid from aspartic acid, succinic, glutaric and adipic acids from glutamic acid). The major volatile products (besides the aldehydes) are lower carboxylic acids (acetic acid from aspartic acid and propionic acid acid from glutamic acid) that can at least partly arise by radical reactions. In both quality and quantity terms, a higher amount of degradation products arises by oxidation of amino acids by peroxodisulphate. Keywords: Strecker degradation; Strecker aldehydes; amino acids; glyoxal; sodium peroxodisulphate; aspartic acid; glutamic acid; asparagine; glutamine; radicals The reaction of an α-amino acid with an oxidation re- asparagine (Asn) and glutamine (Gln).
    [Show full text]
  • Supplementary File 1 (PDF, 650 Kib)
    Preliminary Zinc and boscalid sub lethal concentrations Zinc and boscalid sub lethal concentrations were determined by running preliminary 72‐hour LC50 exposures. A range of concentrations, resulting in 100% survival to 100% mortality was run for both chemicals in water only exposures. Filtered seawater was used as a control and to dilute stock concentrations of zinc and boscalid. Six treatments with three replicates were run for both chemicals including a control (seawater only). The zinc chloride (ZnCl2) exposure concentrations were: 62mg/L; 125mg/L; 250mg/L; 500mg/L and 1000mg/L. The commercial fungicide Filan® has 500g/kg active ingredient of boscalid, concentrations of 100mg/L; 250mg/L; 500mg/L; 750mg/L and 1000mg/L. Acid‐ rinsed 600ml glass beakers were randomly placed in a temperature‐controlled incubator at 20oC (+/‐ 1oC) with added aeration and a one ply sheet of ethanol rinsed toilet paper in each beaker as substratum. No food was added; the average pH of the water was 7.5 across treatments. The dissolved oxygen remained between 70‐100%. Zinc chloride LC50 = 125mg/L and boscalid LC50 = 750mg/L. Table S1. –Concentrations of boscalid and zinc at 0 h and one week. Measured concentrations of boscalid and zinc detected in estuaries in Victoria, Australia. Exposure at Control Exposure at 0 hr Environmental dose 1 week Boscalid 0 N/A 75 mg/L 3.3 mg/L (Vu et al. 2016) Zinc 0.026 – 0.034 mg/L 12.5 mg/L 3.4 mg/L (Long et al. 2015) Table S2. Water Quality Parameters. Date Sample Dissolved oxygen (%) pH Conductivity (µS/cm) Ammonia 15/05/17 Control 98.36 8.44 59464.4 0.25 15/05/17 Zinc 99.10 8.31 59379.1 0.25 15/05/17 Boscalid 99.18 8.28 59656.8 0.25 15/05/17 Mixture 94.81 8.25 59386.0 0.25 30/05/17 Control 101.90 8.16 59332.4 0.5 30/05/17 Zinc 102.47 8.11 59536.7 0.5 30/05/17 Boscalid 92.17 8.15 59489.3 0.5 30/05/17 Mixture 101.57 8.14 59593.2 0.5 Supplementary Material .
    [Show full text]
  • Phenotype Microarrays™
    Phenotype MicroArrays™ PM1 MicroPlate™ Carbon Sources A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Negative Control L-Arabinose N-Acetyl -D- D-Saccharic Acid Succinic Acid D-Galactose L-Aspartic Acid L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol Glucosamine B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic D-Gluconic Acid D,L -α-Glycerol- D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic Acid Acid Phosphate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D-Glucose-6- D-Galactonic D,L-Malic Acid D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid -D-Glucose Maltose D-Melibiose Thymidine α Phosphate Acid- -Lactone γ D-1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 L-Asparagine D-Aspartic Acid D-Glucosaminic 1,2-Propanediol Tween 40 -Keto-Glutaric -Keto-Butyric -Methyl-D- -D-Lactose Lactulose Sucrose Uridine α α α α Acid Acid Acid Galactoside E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 L-Glutamine m-Tartaric Acid D-Glucose-1- D-Fructose-6- Tween 80 -Hydroxy -Hydroxy -Methyl-D- Adonitol Maltotriose 2-Deoxy Adenosine α α ß Phosphate Phosphate Glutaric Acid- Butyric Acid Glucoside Adenosine γ- Lactone F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Glycyl -L-Aspartic Citric Acid myo-Inositol D-Threonine Fumaric Acid Bromo Succinic Propionic Acid Mucic Acid Glycolic Acid Glyoxylic Acid D-Cellobiose Inosine Acid Acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Glycyl-L- Tricarballylic L-Serine L-Threonine L-Alanine L-Alanyl-Glycine Acetoacetic Acid N-Acetyl- -D- Mono Methyl Methyl Pyruvate D-Malic Acid L-Malic Acid ß Glutamic Acid Acid
    [Show full text]
  • Table S1. to P 50 and Bo Ttom Loadin G of Primary Com Pone Nt
    Table S1. Top 50 and bottom loading of primary component (PC)1 and PC2 among 276 metabolites in the roots of two rice cultivars. Ranking PC1 Loding PC2 Loding Ranking PC1 Loding PC2 Loding 1 β-Ala 0.1133 Mucic acid 0.1344 227 Sebacic acid -0.0017 Pelargonic acid -0.0668 2 Hypotaurine 0.1127 Glucaric acid 0.1247 228 Vanillic acid -0.0020 CoA_divalent -0.0672 3 3-Aminoisobutyric acid 0.1116 Glucosaminic acid 0.1192 229 Trimethylamine -0.0021 Ornithine -0.0676 4 Thr 0.1097 Pyridoxine 0.1180 230 Malic acid -0.0029 Tyr -0.0677 5 Pro 0.1075 Allantoin 0.1158 231 cis-Aconitic acid -0.0030 Arg -0.0680 6 Ser 0.1062 N-Acetylglucosamine 1-phosphate 0.1090 232 Norspermidine -0.0033 γ-Glu-Cys -0.0685 7 O-Acetylserine 0.1051 Trimethylamine 0.1039 233 GMP -0.0038 Adenosine -0.0699 8 cGMP 0.1050 Trimethylamine N-oxide 0.1036 234 2-Hydroxyvaleric acid -0.0044 Citric acid -0.0703 9 Hydroxyproline 0.1032 Betaine 0.1016 235 2-Oxoisovaleric acid -0.0056 Allantoic acid -0.0716 10 N6-Methyllysine 0.1029 Cysteinesulfinic acid 0.1009 236 Uric acid -0.0056 Glucose 6-phosphate -0.0718 11 CMP-N-acetylneuraminate 0.1029 N-Acetyl-β-alanine 0.0991 237 Adenine -0.0071 Rhein -0.0757 12 Glutathione (GSSG)_divalent 0.1020 Pyridoxal 0.0981 238 Adenosine -0.0079 Homoserinelactone -0.0761 13 SDMA 0.1014 Vanillic acid 0.0980 239 Morpholine -0.0082 cis-Aconitic acid -0.0772 14 Phe 0.1014 N-Acetylcysteine 0.0961 240 11-Aminoundecanoic acid -0.0108 Adenine -0.0774 15 5-Aminovaleric acid 0.1014 Phosphoenolpyruvic acid 0.0952 241 1H-Imidazole-4-propionic acid -0.0113 Guanosine -0.0776
    [Show full text]
  • Fumaric Acid
    Safety data sheet Safe Work Australia - Code of Practice Fumaric acid ≥99,5 %, for biochemistry article number: 3748 date of compilation: 2020-01-02 Version: GHS 2.0 en Revision: 2020-07-20 Replaces version of: 2020-01-02 Version: (GHS 1) SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Fumaric acid Article number 3748 Registration number (REACH) 01-2119485492-31-xxxx Index No 607-146-00-X EC number 203-743-0 CAS number 110-17-8 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: laboratory chemical laboratory and analytical use 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone: +49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data : Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal code/ Telephone Website city NSW Poisons Informa- Hawkesbury Road 2145 West- 131126 tion Centre mead, NSW Childrens Hospital Emergency information service Poison Centre Munich: +49/(0)89 19240 SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification acc. to GHS Classification acc. to GHS Section Hazard class Hazard class and cat- Hazard egory state- ment 3.3 serious eye damage/eye irritation (Eye Irrit. 2) H319 Australia (en) Page 1 / 12 Safety data sheet Safe Work Australia - Code of Practice Fumaric acid ≥99,5 %, for biochemistry article number: 3748 2.2 Label elements Labelling GHS Signal word Warning Pictograms GHS07 Hazard statements H319 Causes serious eye irritation Precautionary statements Precautionary statements - prevention P280 Wear eye protection/face protection.
    [Show full text]
  • NMR and LC-MS-Based Metabolomics to Study Osmotic Stress in Lignan-Deficient Flax
    molecules Article NMR and LC-MS-Based Metabolomics to Study Osmotic Stress in Lignan-Deficient Flax Kamar Hamade 1, Ophélie Fliniaux 1, Jean-Xavier Fontaine 1 , Roland Molinié 1 , Elvis Otogo Nnang 1, Solène Bassard 1, Stéphanie Guénin 2, Laurent Gutierrez 2, Eric Lainé 3, Christophe Hano 3 , Serge Pilard 4 , Akram Hijazi 5 , Assem El Kak 6 and François Mesnard 1,* 1 UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France; [email protected] (K.H.); ophelie.fl[email protected] (O.F.); [email protected] (J.-X.F.); [email protected] (R.M.); [email protected] (E.O.N.); [email protected] (S.B.) 2 CRRBM, University of Picardie Jules Verne, 80000 Amiens, France; [email protected] (S.G.); [email protected] (L.G.) 3 USC INRAE 1328, Laboratoire LBLGC, Antenne Scientifique Universitaire de Chartres, University of Orleans, 28000 Chartres, France; [email protected] (E.L.); [email protected] (C.H.) 4 Plateforme Analytique, University of Picardie Jules Verne, 80000 Amiens, France; [email protected] 5 Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut 6573, Lebanon; [email protected] 6 Laboratoire de Biotechnologie des Substances Naturelles et Produits de Santé (BSNPS), Lebanese University, Beirut 6573, Lebanon; [email protected] * Correspondence: [email protected]; Tel.: +33-322-82-7787 Citation: Hamade, K.; Fliniaux, O.; Abstract: Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid Fontaine, J.-X.; Molinié, R.; Otogo biosynthetic pathway.
    [Show full text]
  • Chytridiomycosis Causes Catastrophic Organism-Wide Metabolic
    www.nature.com/scientificreports OPEN Chytridiomycosis causes catastrophic organism-wide metabolic dysregulation including Received: 6 March 2018 Accepted: 8 May 2018 profound failure of cellular energy Published: xx xx xxxx pathways Laura F. Grogan 1,2, Lee F. Skerratt2, Lee Berger2, Scott D. Cashins2, Robert D. Trengove3,4 & Joel P. A. Gummer 3,4 Chytridiomycosis is among several recently emerged fungal diseases of wildlife that have caused decline or extinction of naïve populations. Despite recent advances in understanding pathogenesis, host response to infection remains poorly understood. Here we modelled a total of 162 metabolites across skin and liver tissues of 61 frogs from four populations (three long-exposed and one naïve to the fungus) of the Australian alpine tree frog (Litoria verreauxii alpina) throughout a longitudinal exposure experiment involving both infected and negative control individuals. We found that chytridiomycosis dramatically altered the organism-wide metabolism of clinically diseased frogs. Chytridiomycosis caused catastrophic failure of normal homeostatic mechanisms (interruption of biosynthetic and degradation metabolic pathways), and pronounced dysregulation of cellular energy metabolism. Key intermediates of the tricarboxylic acid cycle were markedly depleted, including in particular α-ketoglutarate and glutamate that together constitute a key nutrient pathway for immune processes. This study was the frst to apply a non-targeted metabolomics approach to a fungal wildlife disease and specifcally to dissect the host-pathogen interface of Bd-infected frogs. The patterns of metabolite accumulation we have identifed reveal whole-body metabolic dysfunction induced by a fungal skin infection, and these fndings have broad relevance for other fungal diseases. Recently emerged fungal skin diseases of wildlife include chytridiomycosis in amphibians, white nose syndrome in bats, snake fungal disease and mucormycosis in platypus1,2.
    [Show full text]
  • Intro Bio Lecture 9
    Characteristics of metabolic pathways Aside from its role in energy metabolism: Glycolysis is a good example of a metabolic pathway. Two common characteristics of a metabolic pathway, in general: 1) Each step = a small chemically reasonable change 2) The overall ∆Go is substantial and negative. 1 Energy yield But all this spewing of lactate turns out to be wasteful. Using oxygen as an oxidizing agent glucose could be completely oxidized, to: … CO2 That is, burned. How much energy released then? Glucose + 6 O2 6 CO2 + 6 H2O ∆Go = -686 kcal/mole ! Compared to -45 for glucose 2 lactates (both w/o ATP production considered) Complete oxidation of glucose, Much more ATP But nature’s solution is a bit complicated. The fate of pyruvate is now different 2 From glycolysis: acetyl-CoA 3 pyruvic acid Scores: per glucose 2 NADH 2 ATP pyruvic acid 2 NADH 2 CO2 citric acid oxaloacetic acid Krebs cycle Citric acid cycle isocitric acid malic acid Tricarboxylic acid cycle TCA cycle fumaric acid α keto glutaric acid succinic Handout 9A acid 3 Acetyl-OCoA O|| CH3 –C –OH + co-enzyme A acetyl~CoA acetic acid (acetate) coA acetate group pantothenic acid (vitamin B5) 4 Per glucose FromB glycolysis: acetyl-coA pyruvate Input 2 oxaloacetates 2 NADH 2 ATP pyruvic acid 2 NADH 2 NADH 2 CO 2 NADH 2 2 CO2 citric acid 2 CO2 oxaloacetic acid 6 CO2 Krebs Cycle isocitric acid malic acid fumaric acid α keto glutaric acid succinic acid 5 GTP is energetically equivalent to ATP GTP + ADP GDP + ATP ΔGo = ~0 G= guanine (instead of adenine in ATP) 6 acetyl-CoA B Per 7glucose 2 oxaloacetate 2 NADH 2 ATP pyruvic acid 2 NADH 2 NADH 2 NADH 2 FADH2 citric acid 2 NADH oxaloacetic acid 2 CO2 2 CO2 Krebs cycle 2 CO2 isocitric acid malic acid 6 CO2 fumaric acid α keto glutaric acid succinic acid 7 FAD = flavin adenine dinucleotide Business end (flavin) ~ Vitamin B2 ribose adenine - ribose FAD + 2H.
    [Show full text]
  • 30 Part 172—Food Additives
    Pt. 172 21 CFR Ch. I (4–1–12 Edition) shall be furnished in the form specified Subpart D—Special Dietary and Nutritional in §§ 171.1 and 171.100 for submitting pe- Additives titions. 172.310 Aluminum nicotinate. [42 FR 14491, Mar. 15, 1977, as amended at 42 172.315 Nicotinamide-ascorbic acid complex. FR 15674, Mar. 22, 1977] 172.320 Amino acids. 172.325 Bakers yeast protein. 172.330 Calcium pantothenate, calcium chlo- PART 172—FOOD ADDITIVES PER- ride double salt. MITTED FOR DIRECT ADDITION TO 172.335 D-Pantothenamide. FOOD FOR HUMAN CONSUMP- 172.340 Fish protein isolate. 172.345 Folic acid (folacin). TION 172.350 Fumaric acid and salts of fumaric acid. Subpart A—General Provisions 172.365 Kelp. 172.370 Iron-choline citrate complex. Sec. 172.372 N-Acetyl-L-methionine. 172.5 General provisions for direct food ad- 172.375 Potassium iodide. ditives. 172.379 Vitamin D2. 172.380 Vitamin D3. Subpart B—Food Preservatives 172.385 Whole fish protein concentrate. 172.395 Xylitol. 172.105 Anoxomer. 172.399 Zinc methionine sulfate. 172.110 BHA. 172.115 BHT. Subpart E—Anticaking Agents 172.120 Calcium disodium EDTA. 172.410 Calcium silicate. 172.130 Dehydroacetic acid. 172.430 Iron ammonium citrate. 172.133 Dimethyl dicarbonate. 172.480 Silicon dioxide. 172.135 Disodium EDTA. 172.490 Yellow prussiate of soda. 172.140 Ethoxyquin. 172.145 Heptylparaben. Subpart F—Flavoring Agents and Related 172.150 4-Hydroxymethyl-2,6-di-tert-butyl- Substances phenol. 172.510 Natural flavoring substances and 172.155 Natamycin (pimaricin). natural substances used in conjunction 172.160 Potassium nitrate.
    [Show full text]