United States Patent Patented Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Patented Feb 3,079,235 United States Patent Patented Feb. 26, 1953 1 2 gen at a temperature between 80 and 150° C. and under $379,235 METHGD @F PREPARWG METAL‘LEC NECKEL pressure between 40 and 60 atm., resulting in active nickel AND NECKEL CAREQNYL suitable as a catalyst for certain hydrogenation processes. Ibrahim Dakii, Busto Arsizio, and Luigi Corsi, Milan, The hydroxide reduction under these conditions requires Italy, assignors to Monteeatini Soot-eta Generals. per 6 hours to be completed. l’i'ndustria Mineraria e Chimica, Milan, Eta‘iy, a corpo We have now found that, if operating in the presence ' ration of Italy ' ' of sulfides, this reduction proceeds catalytically and is N0 Drawing.‘ Filed Nov. 27, 1956, 5th‘. No. 624,522 completed in about 30 minutes at 140° C. under a hy ; ‘Claims priority, application Italy Dec. 2, 1955 drogen partial pressure of 30 atm. At higher tempera 16 Claims. (Ci. 23--2tl3) tures and pressures the time required is still less. More This invention relates to a new method of preparing over, the catalyst concentration in?uences the redutcion nickel carbonyl. rate to a substantial degree. For example, at a molar Numerous methods for preparing nickel carbonyl are ratio of Ni:Na2S=10:1, operating at 140° C. and under in existence. Some of them, such as the Mond process a hydrogen partial pressure of 40 atm., the reduction is of purifying raw nickel, are based on reactions between 15 completed in about 25 minutes while, under the same con gas and metallic nickel in the dry state, while others are ditions, but using a molar ratio of Ni:Na2S=20:1 the based on reactions between gas and solutions or sus reduction requires 1 hour. pensions of nickel compounds. The aqueous suspension of ?nely divided reduced nickel The process using nickel oxide as an intermediate re obtained in this manner, can be directly used for the quires, in the ?rst place, some preliminary operations in 20 preparation of nickel carbonyl. As an alternative the order to convert other nickel compounds into nickel suspension can be ?rst ?ltered. The ?nely divided n’ckel oxide. Subsequently thereto, these processes require high obtained in this manner is particularly active and reacts temperatures, about 300-400° C., and long reduction already at room temperature with carbon monoxide un periods in order to produce reduced nickel from the der a pressure of 10 atm. The carbonylation rate ir1— oxide. As a compensation, the process requires only mod 25 creases quickly at higher carbon monoxide pressure. erate temperatures and pressures for the carbonylation vFor example, if a suspens’on of nickel hydroxide reduced reaction between reduced nickel and carbon monoxide. in the presence of sodium sul?de at a molar ratio of The other processes, starting from nickel salts solu Ni:Na2S=l0:l is treated with carbon monoxide at 55° tions or nickel hydrox'de suspensions, are more simple as C. at 25 atm. the reaction is completed in 4 hours, at 45 far as the process steps are concerned, but require much atm. in 50 minutes, at 70 atm. in 35 minutes and at 140 more drastic operating conditions. Thus, the conversion atm. in 17 min. At low carbon monoxide pressures, the of the Ni(CH3)6Cl2-cornplex into nickel tetracarbonyl in?uence of temperature on the carbonylation is negative, by treatment with carbon monoxide requires temperatures that is the reaction rate decreases by increasing the tem of 80~l70° C. at a pressure of 50-200 atm. and in perature. The Ni:Na2S ratio also in?uences the carbon volves serious problems of selecting equ'pment that is 35 ylation rate, especially when low partial pressures of resistant to the reactants at the required reaction condi carbon monoxide are used. tions. According to other disclosures concerned with The reactions involved in this process (assuming that nickel carbonyl hydroxide, a conversion catalyzed with the starting Ni(OH)2 is prepared from NiCl2) are as alkali sul?des or cyanides, by means of reacting directly follows: with carbon monoxide occurs under relatively drastic 40 temperature and pressure conditions, such as at tem peratures above 60° C. and at a pressure in excess of N MOB) z-i-Hz Nl+2H2O ?rst stage 50 atm. However, even at a temperature above 80° C. sul?de catalyst and a pressure higher than 50 atm., the reaction is slow Ni+400 _-————> Ni (CO)4 second stage and requires at least twenty hours; while at 40° C. it is 45 so slow that it is not suitable for commercial practice. In the direct reaction between nickel hydrox’de and carbon monoxide, for every mol of nickel tetracarbonyl sul?de catalyst formed, one mole carbon dioxide is obtained which, in Ni-l-4GO -—--——-> Ni (00% second stage the subsequent stage of recovering nickel carbonyl, would 50 cause some dii?culties and, therefore, must be removed Instead of the chloride, any organic or inorganic nickel either by washing with water or by treatment wIth alka sal-t can be used, provided that it is not the salt of a lies. In both cases the consumption of energy and re strongly oxidizing acid. Instead of sodium hydroxide, action materials is rather high and intricate equipment any other alkali or earth alkali base can be used while, is required. 55 in lieu of hydrogen and carbon, monoxide, mixtures of Now we have found and this is the object of the pres both gases or gases containing them can be used. ent invention, that, if the reduction of nickel hydroxide Both reduction and carbonylation reactions can be car and the carbonylation of the ?nely divided nickel sus ried out in one or in two different reactors. The latter pension thus obtained are carried out in separate stages, is preferable because the two phases have di?erent op the carbonylation is performed without the presence of timum conditions. practically any CO2, because CO2 cannot form at the As previously mentioned, contrary to the prior proc ?rst stage due to the reducing action of hydrogen which esses for preparing nickelcarbonyl from a nickel hydrox is being used, or the CO2 is readily discharged after the ide suspension, in the herein claimed carbonylation reac ?rst stage if the reduction is carried out with carbon tion the carbon dioxide formation is limited only to monoxide. 65 traces. This simpli?es substantially the recovery of nick According to the present invention a catalyst is used elcarbonyl, because at room temperature and ordinary consisting of an organic or inorganic sul?de, such as pressure, one liter CO2 entrains one liter of nickel car Nags, CS2 or barium sul?de, which permits to operate at bonyl vapors. The reaction rate is not in?uenced by the moderate temperatures and pressures, at least during the concentration of the nickel suspension and, therefore, second stage of carbonylation. 70 diluted or concentrated suspensions can be employed; It is known that an aqueous suspension of nickel hy for example, operations with suspensions containing 15% droxide puri?ed by washing can be reduced with hydro nickel can be performed without any inconvenience. ' 3,079,235 3 4 The process can be carried out either as batch or con NaOH and employing barium m'onosul?de (7 parts 13218), tinuous process. as catalyst. The reduction is carried out at 200° C. for The following examples are presented to illustrate but ?fteen minutes under a hydrogen partial pressure of 30 in no way to limit the present invention: atm. and the carbonylation at 55° C. for forty-?ve min Example 1 utes under a CO partial pressure of 45 atm. Conversion is 90.1% . 125 parts NiClz, 275 parts water, 155 parts of a 30% Example 7 NaOH solution and 5 parts Nags are charged into a re— actor provided with a blade stirrer and electrically heated The process is carried out as in Example 1 but starting with 125 parts nickel chloride, 275 parts water, 150 parts from outside. ‘ After carefully displacing the air in the 10 reactor with hydrogen, the mixture is heated to 135 NaOH and using 2 parts carbon disul?de as a catalyst. ‘140" C. and hydrogen gas of'70 atm. is introduced. A The mixture is reduced with hydrogen at 160° C. under quick decrease of pressure is almost immediately noted a hydrogen partial pressure of 40 atm.; reduction time ‘which shows the commencement of Ni(Ol-I)2 reduction twelve minutes. The carbonylation is carried out as 55° C. under a CO pressure of 45 atm.; carbonylation to metal nickel. The reduction is completed after 17 15 minutes. After cooling, unreacted hydrogen is dis time 47 minutes. Conversion 92.8%. charged, the temperature is brought to 100° C. and Example 8 carbon monoxide of 140 atm. is introduced. The car ‘bonylation reaction starts immediately and is completed The process is carried out in the apparatus of Example after 17 minutes. 20 1. 125 parts nickel chloride, 275 parts water, 145 parts The conversion of nickel hydroxide to nickelcarbonyl NaOH and, as a catalyst, 2.5 parts sodium sul?de are is 88.4% while the yield, based on the converted product, employed. The reduction is carried out with CO at ‘is almost quantitative. In theexhaust gases the presence 200° C. in two stages in order to remove CO2 from the of carbon dioxide is not noted. autoclave. During the reduction the CO partial pressure 25 is 30 atm. The carbonylation is carried out at 52° C. Example 2 under a CO pressure of 45 atm. The conversion yield is 125 parts‘ NiClz, 275 parts water, 185 parts 30% NaOH 72.4%.
Recommended publications
  • Appendix H EPA Hazardous Waste Law
    Appendix H EPA Hazardous Waste Law This Appendix is intended to give you background information on hazardous waste laws and how they apply to you. For most U.S. Environmental Protection Agency (EPA) requirements that apply to the University, the Safety Department maintains compliance through internal inspections, record keeping and proper disposal. In Wisconsin, the Department of Natural Resources (DNR) has adopted the EPA regulations, consequently EPA and DNR regulations are nearly identical. EPA defines This Appendix only deals with "hazardous waste" as defined by the EPA. hazardous waste as Legally, EPA defines hazardous waste as certain hazardous chemical waste. This hazardous chemical Appendix does not address other types of regulated laboratory wastes, such as waste; radioactive, infectious, biological, radioactive or sharps. Chapter 8 descibes disposal procedures infectious and biohazardous waste for animals. Chapter 9 describes disposal procedures for sharps and other waste that are regulated by can puncture tissue. Chapter 11 discusses Radiation and the Radiation Safety for other agencies. Radiation Workers provides guidelines for the disposal of radioactive waste. Procedures for medical waste are written by the UW Hospital Safety Officer. The Office of Biological Safety can provide guidance for the disposal of infectious and biological waste. EPA regulations focus on industrial waste streams. As a result, many laboratory chemical wastes are not regulated by EPA as hazardous chemical waste. However, many unregulated chemical wastes do merit special handling and disposal If a waste can be procedures. Thus, Chapter 7 and Appendix A of this Guide recommend disposal defined as: procedures for many unregulated wastes as if they were EPA hazardous waste.
    [Show full text]
  • Nickel Carbonyl Final AEGL Document
    Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 6 Committee on Acute Exposure Guideline Levels, Committee on Toxicology, National Research Council ISBN: 0-309-11214-1, 318 pages, 6 x 9, (2007) This free PDF was downloaded from: http://www.nap.edu/catalog/12018.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 6 http://www.nap.edu/catalog/12018.html Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Copyright © National Academy of Sciences.
    [Show full text]
  • Safety Data Sheet According to Regulation (EC) No. 1907/2006 (REACH) As Amended Material Name: Carbon Dioxide (DX) Gas Purifier Media SDS ID: 0048 (EU)
    Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH) as amended Material Name: Carbon Dioxide (DX) Gas Purifier Media SDS ID: 0048 (EU) SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Material Name Carbon Dioxide (DX) Gas Purifier Media Product Code 8008786 Product Description The media contained in this product, when used as designed, under normal operating conditions, and installed and maintained according to product literature, is not expected to be hazardous. Classifications and hazards represented on this Safety Data Sheet are only applicable in the unlikely event that the purifier media is liberated from the purifier housing. The purifier has sieves internal to the housing to prevent the media from escaping during intended use. Caution: Some units are provided with a fill port, which is factory sealed with a VCR® fitting and plug, covered with red shrink wrap. This port must never be opened by the end user, since it will potentially result in a release of the media. Registration status REACH compliance status of the substance is currently under investigation. 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses For removal of volatile acids and bases, refractory compounds, condensable organics, non-condensable organics and moisture from carbon dioxide gas Uses advised against Use only with gases listed in Identified Uses. 1.3 Details of the supplier of the safety data sheet Entegris GmbH Hugo-Junkers-Ring 5, Gebäude 107/W, 01109 Dresden, Germany Telephone Number: +49 (0) 351 795 97 0 Fax Number: +49 (0) 351 795 97 499 Only Representative Tetra Tech International, Inc.
    [Show full text]
  • A Pilgrimage Into the Archives of Nickel Toxicology
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 19, No. 1 Copyright © 1989, Institute for Clinical Science, Inc. A Pilgrimage into the Archives of Nickel Toxicology F. WILLIAM SUNDERMAN, M.D., Ph .D. Institute for Clinical Science, Pennsylvania Hospital,. Philadelphia, PA 19107 Introduction the contributors to this and the three previous symposia, with special com­ It is my great pleasure to address this mendation to my beloved son, Bill Jr. assembly of learned scientists on the My memory with respect to nickel tox­ occasion of the Fourth International icology goes back to 1943 when I Conference on Nickel Metabolism and attended my first nickel meeting at Los Toxicology. Alamos, New Mexico. This initial meet­ When I seriously sat down to prepare ing was arranged out of necessity. It was remarks for this evening’s program, I held for the purpose of devising methods became aghast as I pondered upon the to protect workers in nuclear energy title that I had submitted. How could I from the hazards of acute and chronic presume to cover such a colossal subject exposure to nickel tetracarbonyl in the course of a brief address? It is true Ni(CO)4. It was recognized then that that the hazards of exposure to nickel nickel carbonyl was one of the most toxic and nickel compounds have been recog­ of all gases. At our first meeting, those in nized only within recent decades; how­ attendance set three goals: (1 ) to obtain ever, the number of research contribu­ accurate toxicity data on nickel carbonyl; tions and publications on nickel (2 ) to establish programs for the protec­ toxicology that have appeared during the tion and treatment of workers who might past three decades has been substantial.
    [Show full text]
  • Safety Data Sheet Material Name: Nickel Carbonyl
    Safety Data Sheet Material Name: Nickel Carbonyl * * *Section 1 - IDENTIFICATION* * * Material Name NICKEL CARBONYL Synonyms MTG MSDS 128; NICKEL TETRACARBONYL; NICKEL SPONGE; CARBONYL NICKEL POWDER; TETRACARBONYL NICKEL; UN 1259; C4NiO4 Chemical Family carbonyls Product Use Industrial and Specialty Gas Applications. Restrictions on Use None known. Details of the supplier of the safety data sheet Electronic Fluorocarbons 3266 Bergey Road Hatfield PA 19440 1-800-535-5053 (Emergency Telephone Number) 1-352-323-3500 (Outside the US - Call Collect) * * *Section 2 - HAZARDS IDENTIFICATION* * * Classification in accordance with paragraph (d) of 29 CFR 1910.1200. Flammable Liquids - Category 2 Acute Toxicity - Inhalation - Dust/Mist - Category 1 Acute Toxicity - Inhalation - Vapor - Category 1 Skin Corrosion/Irritation - Category 2 Serious Eye Damage/Eye Irritation - Category 1 Respiratory Sensitization - Category 1 Skin Sensitization - Category 1 Carcinogenicity - Category 1A Reproductive Toxicity - Category 1B Specific target organ toxicity - Single exposure - Category 1 Hazardous to the Aquatic Environment - Acute - Category 1 Hazardous to the Aquatic Environment - Chronic - Category 1 GHS Label Elements Symbol(s) Signal Word Danger Hazard Statement(s) Highly flammable liquid and vapour. Fatal if inhaled. Page 1 of 10 Safety Data Sheet Material Name: Nickel Carbonyl Causes skin irritation. Causes serious eye damage. May cause allergy or asthma symptoms or breathing difficulties if inhaled. May cause an allergic skin reaction. May cause cancer. May damage fertility or the unborn child. Causes damage to organs. (adrenal gland , central nervous system , heart , kidneys , liver , pancreas , respiratory system , spleen ) Very toxic to aquatic life. Precautionary Statement(s) Prevention Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
    [Show full text]
  • Nickel and Nickel Compounds Were Considered by Previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987)
    NICKEL AND NieKEL eOMPOUNDS Nickel and nickel compounds were considered by previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time, new data have become available, and these are inc1uded in the pres- ent monograph and have been taken into consideration in the evaluation. 1. ehemical and Physical Data The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-con tain- ing substances, but it is indicative of the range of nickel alloys and compounds avail- able, including some compounds that are important commercially and those that have been tested in biological systems. A number of intermediary compounds occur in refineries which cannot be characterized and are not listed. 1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-containing compounds Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names and atomic or molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds Chemical Chem. Abstr. SYDoDyms and trade Dames Formula Dame Seiv. Reg. Oxda- Numbera tion stateb Metallc nickel and nickel alloys Nickel 7440-02-0 c.I. 77775; NI; Ni 233; Ni 270; Nickel 270; Ni o (8049-31-8; Nickel element; NP 2 17375-04-1; 39303-46-3; 53527-81-4; 112084-17-0) -- 257 - NICKEL AND NICKEL COMPOUNDS 259 Table i (contd) Chemical Chem. Abstr. Synonym and trade names Formula name Seiv. Reg. Ox- Number4 dation stateb
    [Show full text]
  • Socio-Economic Study of Impact of EU Nickel Compounds Classification on APEC Economies
    Socio-Economic Study of Impact of EU Nickel Compounds Classification on APEC Economies Mining Task Force June 2012 APEC Project: MTF 01/2010S Prepared by Nickel Institute 2700-161 Bay Street Toronto, Ontario M5J 2S1 CANADA In cooperation with Ministry of Industry and Trade of the Russian Federation 7, Kitaygorodsky proezd 109074 Moscow RUSSIA For Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace SINGAPORE 119616 Tel: (65) 68919 600 Fax: (65) 68919 690 Email: [email protected] Website: www.apec.org © 2012 APEC Secretariat APEC#212-SO-01.1 2 Disclaimer This report presents the outcomes of a self-funded project undertaken by the Russian Federation supported by Canada for The Mining Task Force of the Asia-Pacific Economic Cooperation Secretariat (APEC Secretariat). The report is based on an analysis by an international consortium of consultants led by Frontier Economics Pty Ltd for the Nickel Institute on behalf of the Russian Federation. The views and findings expressed in this report do not necessarily reflect those of the Russian Federation, Canada, any other APEC member economy, the APEC Secretariat, the APEC Mining Task Force, the Nickel Institute or member companies of the Nickel Institute. Although reasonable efforts have been made to ensure that the contents of this report are factually correct, none of the Russian Federation, Canada, any other APEC member economy, the APEC Secretariat, the APEC Mining Task Force, the Nickel Institute, member companies of the Nickel Institute, Frontier Economics Pty Ltd and its consortium of international consultants accepts responsibility for the accuracy, completeness, currency or reliability of the contents of this report and none shall be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.
    [Show full text]
  • 841 Super Shield Nickel Conductive Coating
    841 Super Shield Nickel Conductive Coating MG Chemicals UK Limited Version No: A-1.01 Issue Date: 28/06/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 17/03/2020 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 841 Synonyms SDS Code: 841-Liquid; 841-900ML, 841-1G (840-900ML, 840-250G) Other means of identification Super Shield Nickel Conductive Coating 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Nickel filled, electrically conductive coating Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H225 - Flammable Liquid Category 2, H315 - Skin regulation (EC) No 1272/2008 Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H361 - Reproductive Toxicity Category 2, H317 - Skin Sensitizer Category 1, H372 - [CLP] [1] Specific target organ toxicity - repeated exposure Category 1, H351 - Carcinogenicity Category 2, H412 - Chronic Aquatic Hazard Category 3 Legend: 1.
    [Show full text]
  • Metal Carbonyls
    MODULE 1: METAL CARBONYLS Key words: Carbon monoxide; transition metal complexes; ligand substitution reactions; mononuclear carbonyls; dinuclear carbonyls; polynuclear carbonyls; catalytic activity; Monsanto process; Collman’s reagent; effective atomic number; 18-electron rule V. D. Bhatt / Selected topics in coordination chemistry / 2 MODULE 1: METAL CARBONYLS LECTURE #1 1. INTRODUCTION: Justus von Liebig attempted initial experiments on reaction of carbon monoxide with metals in 1834. However, it was demonstrated later that the compound he claimed to be potassium carbonyl was not a metal carbonyl at all. After the synthesis of [PtCl2(CO)2] and [PtCl2(CO)]2 reported by Schutzenberger (1868) followed by [Ni(CO)4] reported by Mond et al (1890), Hieber prepared numerous compounds containing metal and carbon monoxide. Compounds having at least one bond between carbon and metal are known as organometallic compounds. Metal carbonyls are the transition metal complexes of carbon monoxide containing metal-carbon bond. Lone pair of electrons are available on both carbon and oxygen atoms of carbon monoxide ligand. However, as the carbon atoms donate electrons to the metal, these complexes are named as carbonyls. A variety of such complexes such as mono nuclear, poly nuclear, homoleptic and mixed ligand are known. These compounds are widely studied due to industrial importance, catalytic properties and structural interest. V. D. Bhatt / Selected topics in coordination chemistry / 3 Carbon monoxide is one of the most important π- acceptor ligand. Because of its π- acidity, carbon monoxide can stabilize zero formal oxidation state of metals in carbonyl complexes. 2. SYNTHESIS OF METAL CARBONYLS Following are some of the general methods of preparation of metal carbonyls.
    [Show full text]
  • Macromolecular Metal Carboxylates and Their Nanocomposites
    Springer Series in Materials Science 138 Macromolecular Metal Carboxylates and Their Nanocomposites Bearbeitet von Anatolii D. Pomogailo, Gulzhian I. Dzhardimalieva, V. N. Kestelman 1st Edition. 2010. Buch. x, 306 S. Hardcover ISBN 978 3 642 10573 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 695 g Weitere Fachgebiete > Technik > Werkstoffkunde, Mechanische Technologie > Materialwissenschaft: Keramische Werkstoffe, Glas, Sonstige Werkstoffe Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Monomeric and Polymeric Carboxylic Acids Our goal was not to analyze known unsaturated carboxylic acids (this problem it- self is unrealizable), but only to give a general idea about unsaturated acids and their polymers more often used for obtaining metal carboxylates. Basic attention was paid to those representatives which are a priori capable of polymerization. As data on unsaturated carboxylic acids are dispersed in numerous researches, directories, and catalogs, many of which are not always accessible, their most important characteris- tics are given below. Other unsaturated heteroacids and their polymers (for example, vinylsulfonic and vinylbenzoic sulfonic acids, thio-, phosphonic, amino-, and other acids) are not analyzed in this book. More detailed information can be found in other available literature [1–4]. 2.1 Mono- and Polybasic Unsaturated Carboxylic Acids: Characteristic and Polymerization These types of monomers traditionally form the material basis of high-molecular compounds chemistry.
    [Show full text]
  • Nickel Carbonyl 6007
    NICKEL CARBONYL 6007 Ni(CO)4 MW: 170.73 CAS: 13463-39-3 RTECS: QR6300000 METHOD: 6007, Issue 2 EVALUATION: PARTIAL Issue 1: 15 August 1987 Issue 2: 15 August 1994 OSHA : 0.001 ppm (as Ni) PROPERTIES: liquid; d 1.318 g/mL @ 20 °C; BP 43 °C; NIOSH: 0.001 ppm; carcinogen MP •25 °C; VP 43 kPa (321 mm Hg; 42% ACGIH: 0.05 ppm (as Ni) v/v) @ 20 °C; lower explosive limit 2% (1 ppm = 6.98 mg/m 3 @ NTP) v/v in air SYNONYMS: nickel tetracarbonyl SAMPLING MEASUREMENT SAMPLER: PREFILTER + SOLID SORBENT TUBE TECHNIQUE: ATOMIC ABSORPTION, GRAPHITE (low-Ni charcoal, 120 mg/60 mg; FURNACE 0.8-µm cellulose ester membrane) ANALYTE: nickel FLOW RATE: 0.05 to 0.2 L/min DESORPTION: 1 mL 3% HNO 3; 30 min ultrasonic bath VOL-MIN: 7 L @ 0.001 ppm -MAX: 80 L INJECTION VOLUME: 20 µL SHIPMENT: routine GRAPHITE SAMPLE FURNACE: 110 °C dry 30 sec; 800 °C char 15 sec; STABILITY: 95% recovered after 17 days @ room ³ 2700 °C atomize 10 sec temperature [1] WAVELENGTH: 232 nm, with background correction BLANKS: 2 to 10 field blanks per set 2+ CALIBRATION: standard solution of Ni in 3% (w/v) HNO 3 ACCURACY RANGE: 0.05 to 0.6 µg Ni per sample [1] RANGE STUDIED: 0.0007 to 0.017 ppm [1] ESTIMATED LOD: 0.01 µg Ni per sample [1] (3- to 40-L air samples) PRECISION (S ): 0.028 @ 0.08 to 0.5 µg Ni per sample BIAS: • 7% [1] r ˆ OVERALL PRECISION (S rT): 0.099 [1] ACCURACY: ± 26.4% APPLICABILITY: The working range is 0.00036 to 0.007 ppm (0.0025 to 0.05 mg/m 3) nickel carbonyl for a 20-L air sample.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Nitrogen ligands in transition metal carbonyl systems Payling, Catherine A. How to cite: Payling, Catherine A. (1969) Nitrogen ligands in transition metal carbonyl systems, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8653/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk NITROGEN LIGANDS IN TRANSITION METAL CARBONYL SYSTEMS by Catherine A. Payling, B.Sc. (St. Mary's College) A thesis submitted to the University of Durham for the degree of Doctor of Philosophy July 1969 MEMORANDUM The work described in this thesis was carried out in the University of Durham between October 1966 and July 1969. It has not been submitted for any other degree and is the original work of the author except where acknowledged by reference. Part of this work has been published in the Abstracts of the 4th International Conference on Organometallic Chemistry, Bristol, July 1969.
    [Show full text]