Bioceramics for Hip Joints: the Physical Chemistry Viewpoint
Total Page:16
File Type:pdf, Size:1020Kb
Materials 2014, 7, 4367-4410; doi:10.3390/ma7064367 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Bioceramics for Hip Joints: The Physical Chemistry Viewpoint Giuseppe Pezzotti 1,2,3,4 1 Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8126, Japan; E-Mail: [email protected]; Tel./Fax: +81-757-247-568 2 Department of Orthopedic Research, Loma Linda University, 11406 Loma Linda Drive, Suite 606 Loma Linda, CA 92354, USA 3 The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan 4 Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto 602-0841, Japan Received: 1 April 2014; in revised form: 14 May 2014 / Accepted: 26 May 2014 / Published: 11 June 2014 Abstract: Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past. Keywords: hip joint; ceramics; oxygen vacancy; alumina-zirconia composites; silicon nitride; cathodoluminescence spectroscopy Materials 2014, 7 4368 1. Introduction Evolutional processes of the human body, taking place through continual and unabated adaptations over a period of many millions of years, has led to optimization in both form and functions of diarthrodial joints. Among such complex structures, consisting of hard tissue, soft tissue, and fluids, the hip joint is the largest one in our body, and also a heavily demanded one for repetitive loads of high magnitude from daily activities. Under such severe conditions, any of the constituent parts of the hip joint might break down in its structure through sudden injury or degenerative diseases. Any breakdown might result in impaired joint mobility and pain. As the hip joint is particularly prone to failure, any such failure is typically treated through a surgical intervention, commonly referred to as total hip arthroplasty (THA). This is a quite invasive surgery and involves using artificial materials to replace the bearing surfaces of both femur (i.e., the femoral head component) and pelvis (i.e., the acetabular liner component). It should be emphasized at the outset that artificial biomaterials, despite being inherently stronger than biological tissues, could by no means surpass them in their biological response and lubrication capacity. Having said this, we should continuously search for bearing biomaterials with improved performance and elongated lifetime in vivo. One aspect of the general statements in focus here is to appraise how difficult could be to reproduce in full the characteristics of bioinertness and the efficient lubrication mechanisms of human joints. Artificial prostheses, indeed, unavoidably show a limited lifetime and remain insufficiently adjusted for operation in the human body, as compared to human joints. Notwithstanding the foregoing, the great majority of THA surgeries have indeed proven quite successful, as far as most patients are satisfied with both the achieved pain reduction and increased mobility [1–3]. Moreover, some long established and widely used hip prostheses have experienced survival rates >90% after 10 years [4]. However, statistics teach us that a significant (and increasing) number of patients have to endure a revision surgery [5]. While such cases might highlight the fact that something is systematically missing in the overall THA protocol, we need to distinguish at the outset between: (i) revision surgeries occurring within two or three years from the primary surgery (i.e., before elapsing the expected lifetime of the hip prosthesis), thus due to poorly manufactured implants, poor design, or surgical errors; and, (ii) revision surgeries occurring at >10 years implantation and associated with the unavoidably limited lifetime of the implanted synthetic material. Specifically regarding the above point (i), a considerable body of legalization has now been enacted to govern the medical device industry (e.g., including the so-called Medical Device Amendment Acts in the US and the Medical Device Directives in the European Union). The primary purpose of these laws and regulations is to ensure both safety and effectiveness of the marketed devices. These objectives are achieved through preliminary testing the medical devices (i.e., including a pre-clinical stage with laboratory bench tests and several clinical stages including randomized and multicenter clinical trials). Our past studies have only marginally been involved with type (i) failures, specifically with reference to particularly evident and massive cases of material failures such as the catastrophic fractures of acetabular cups in sandwich-type ceramic-on-ceramic hip joints [6] and of environmentally degraded ceramic femoral heads [7]. Nevertheless, we have clearly stated our ideas on the insufficiency of the protocols of quality control, in our opinion associated with a lack of pre-operative control (e.g., to be performed in the hospitals) for each individual joint implanted [8,9]. Materials 2014, 7 4369 The introduction of such protocols, which we have proposed as being easily achievable through Raman spectroscopy, is particularly stringent for controlling the state of oxidation of polyethylene liners. Note that type (i) failures, somewhat erratic in their nature, cannot be suppressed or even reduced through merely enlarging on (or further complicating) the body of regulatory requirements. These types of failure have no relationship with biomaterial components matching or not the conditions and the properties declared in the preliminary regulatory process. On the contrary, there is a threshold for regulatory requirements beyond which the need for guarantying patients’ safety unavoidably encroaches upon de facto delaying the proposal of new products in the biomedical market. From a purely technological viewpoint, however, we find hardly conceivable how nowadays deterministic levels of quality control could even be applied in sub-micron-sized electronic devices [10], while they are yet conspicuously missing in macroscopic joint devices (i.e., despite the high impact of the latter ones on social welfare). Regarding the above point (ii), the main issue resides in the amount of revision surgeries associated with lifetime expiration of what could be judged as a “successful” hip implant. In this latter context, a challenge to be taken up resides in the development of not only more reliable, but also more durable biomaterials. We have extensively discussed elsewhere our strategic view for future developments in the specific field of bioceramics [8,9]. In this paper, we shall further inquire into intrinsic biomaterial issues related to their “natural” cycle of lifetime when embedded in biological environment. In particular, we shall look into whether new in vitro experimental testing protocols could actually be devised, which enable differentiating the intrinsic lifetime performance of different hip prostheses. Such being the case, which testing protocols could prove the most appropriate? Our recent spectroscopic research suggests that the answer might lie in the physical chemistry of the biomaterial surfaces [11–20], the issue of much contention in pre-clinical experimental testing of hip prostheses thus resulting shifted toward the possibility of specifying additional (and more effective) evaluation criteria and protocols. In the opinion of this author, new protocols should additionally rely on designing and monitoring the bearing surfaces at the molecular scale. Design criteria shall newly be suggested here based on physical chemistry arguments. 2. Background on Physical Chemistry of Bioceramics 2.1. A serious Inquiry on Bioinertness of Ceramic Oxides Long-standing definitions of bioinert materials include at top-list positions some ceramic oxides, such as alumina (Al2O3) and zirconia (ZrO2; or, if partially stabilized with 3 mol% yttrium oxide (Y2O3), commonly referred to as 3Y-TZP) [21,22]. Such oxide biomaterials have extensively been described as extremely stable in biological environment and endowed with long-term structural reliability (i.e., intended as the preservation of their pristine mechanical properties, as measured before in vivo exposure), in addition to their peculiar capability of eliciting a minimal response in the host tissues. These are indeed true and precious properties. Such excellent functional behavior definitely represents a fundamental requirement for a biomaterial to be employed in hip arthroplasty.