Recent Advances in Information Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract in This Paper, D-Strong and Almost D-Strong Near-Rings Ha
Periodica Mathematica Hungarlca Vol. 17 (1), (1986), pp. 13--20 D-STRONG AND ALMOST D-STRONG NEAR-RINGS A. K. GOYAL (Udaipur) Abstract In this paper, D-strong and almost D-strong near-rings have been defined. It has been proved that if R is a D-strong S-near ring, then prime ideals, strictly prime ideals and completely prime ideals coincide. Also if R is a D-strong near-ring with iden- tity, then every maximal right ideal becomes a maximal ideal and moreover every 2- primitive near-ring becomes a near-field. Several properties, chain conditions and structure theorems have also been discussed. Introduction In this paper, we have generalized some of the results obtained for rings by Wong [12]. Corresponding to the prime and strictly prime ideals in near-rings, we have defined D-strong and almost D-strong near-rings. It has been shown that a regular near-ring having all idempotents central in R is a D-strong and hence almost D-strong near-ring. If R is a D-strong S-near ring, then it has been shown that prime ideals, strictly prime ideals and com- pletely prime ideals coincide and g(R) = H(R) ~ ~(R), where H(R) is the intersection of all strictly prime ideals of R. Also if R is a D-strong near-ring with identity, then every maximal right ideal becomes a maximal ideal and moreover every 2-primitive near-ring becomes a near-field. Some structure theorems have also been discussed. Preliminaries Throughout R will denote a zero-symmetric left near-ring, i.e., R -- Ro in the sense of Pilz [10]. -
Neural Networks and the Search for a Quadratic Residue Detector
Neural Networks and the Search for a Quadratic Residue Detector Michael Potter∗ Leon Reznik∗ Stanisław Radziszowski∗ [email protected] [email protected] [email protected] ∗ Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 Abstract—This paper investigates the feasibility of employing This paper investigates the possibility of employing ANNs artificial neural network techniques for solving fundamental in the search for a solution to the quadratic residues (QR) cryptography problems, taking quadratic residue detection problem, which is defined as follows: as an example. The problem of quadratic residue detection Suppose that you have two integers a and b. Then a is is one which is well known in both number theory and a quadratic residue of b if and only if the following two cryptography. While it garners less attention than problems conditions hold: [1] such as factoring or discrete logarithms, it is similar in both 1) The greatest common divisor of a and b is 1, and difficulty and importance. No polynomial–time algorithm is 2) There exists an integer c such that c2 ≡ a (mod b). currently known to the public by which the quadratic residue status of one number modulo another may be determined. This The first condition is satisfied automatically so long as ∗ work leverages machine learning algorithms in an attempt to a 2 Zb . There is, however, no known polynomial–time (in create a detector capable of solving instances of the problem the number of bits of a and b) algorithm for determining more efficiently. A variety of neural networks, currently at the whether the second condition is satisfied. -
Microfilmed 1996 Information to Users
UMI MICROFILMED 1996 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 NonhZeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Interpoint Distance Methods for the Analysis of High Dimensional Data DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By John Lawrence, B. -
A Scalable System-On-A-Chip Architecture for Prime Number Validation
A SCALABLE SYSTEM-ON-A-CHIP ARCHITECTURE FOR PRIME NUMBER VALIDATION Ray C.C. Cheung and Ashley Brown Department of Computing, Imperial College London, United Kingdom Abstract This paper presents a scalable SoC architecture for prime number validation which targets reconfigurable hardware This paper presents a scalable SoC architecture for prime such as FPGAs. In particular, users are allowed to se- number validation which targets reconfigurable hardware. lect predefined scalable or non-scalable modular opera- The primality test is crucial for security systems, especially tors for their designs [4]. Our main contributions in- for most public-key schemes. The Rabin-Miller Strong clude: (1) Parallel designs for Montgomery modular arith- Pseudoprime Test has been mapped into hardware, which metic operations (Section 3). (2) A scalable design method makes use of a circuit for computing Montgomery modu- for mapping the Rabin-Miller Strong Pseudoprime Test lar exponentiation to further speed up the validation and to into hardware (Section 4). (3) An architecture of RAM- reduce the hardware cost. A design generator has been de- based Radix-2 Scalable Montgomery multiplier (Section veloped to generate a variety of scalable and non-scalable 4). (4) A design generator for producing hardware prime Montgomery multipliers based on user-defined parameters. number validators based on user-specified parameters (Sec- The performance and resource usage of our designs, im- tion 5). (5) Implementation of the proposed hardware ar- plemented in Xilinx reconfigurable devices, have been ex- chitectures in FPGAs, with an evaluation of its effective- plored using the embedded PowerPC processor and the soft ness compared with different size and speed tradeoffs (Sec- MicroBlaze processor. -
On Moduli for Which the Fibonacci Sequence Contains a Complete System of Residues S
ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey Shah [1] and Bruckner [2] have considered the problem of determining which moduli m have the property that the Fibonacci sequence {u }, de- fined in the usual way9 contains a complete system of residues modulo m, Following Shah we say that m is defective if m does not have this property, The results proved in [1] includes (I) If m is defective, so is any multiple of m; in particular, 8n is always defective. (II) if p is a prime not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (in) If p is a prime = 3 or 7 (mod 20) and is not defective^ thenthe set {0, ±1, =tu3, ±u49 ±u5, • • • , ±u }9 where h = (p + l)/2 ? is a complete system of residues modulo p„ In [2], Bruckner settles the case of prime moduli by showing that all primes are defective except 2, 3S 5, and 7. In this paper we complete the work of Shah and Bruckner by proving the following re suit f which completely characterizes all defective and nondefective moduli. Theorem. A number m is not defective if and only if m has one of the following forms: k k k 5 , 2 * 5 f 4»5 , 3 k k 3 *5 5 6«5 , k k 7-5 , 14* 5* , where k ^ 0S j — 1. Thus almost all numbers are defective. We will prove a series of lem- mas, from which the theorem will follow directly, We first make some use- ful definitions. -
Grade 7 Mathematics Strand 6 Pattern and Algebra
GR 7 MATHEMATICS S6 1 TITLE PAGE GRADE 7 MATHEMATICS STRAND 6 PATTERN AND ALGEBRA SUB-STRAND 1: NUMBER PATTERNS SUB-STRAND 2: DIRECTED NUMBERS SUB-STRAND 3: INDICES SUB-STARND 4: ALGEBRA GR 7 MATHEMATICS S6 2 ACKNOWLEDGEMENT Acknowledgements We acknowledge the contributions of all Secondary and Upper Primary Teachers who in one way or another helped to develop this Course. Special thanks to the Staff of the mathematics Department of FODE who played active role in coordinating writing workshops, outsourcing lesson writing and editing processes, involving selected teachers of Madang, Central Province and NCD. We also acknowledge the professional guidance provided by the Curriculum Development and Assessment Division throughout the processes of writing and, the services given by the members of the Mathematics Review and Academic Committees. The development of this book was co-funded by GoPNG and World Bank. MR. DEMAS TONGOGO Principal- FODE . Written by: Luzviminda B. Fernandez SCO-Mathematics Department Flexible Open and Distance Education Papua New Guinea Published in 2016 @ Copyright 2016, Department of Education Papua New Guinea All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or any other form of reproduction by any process is allowed without the prior permission of the publisher. ISBN: 978 - 9980 - 87 - 250 - 0 National Library Services of Papua New Guinea Printed by the Flexible, Open and Distance Education GR 7 MATHEMATICS S6 3 CONTENTS CONTENTS Page Secretary‟s Message…………………………………….…………………………………......... 4 Strand Introduction…………………………………….…………………………………………. 5 Study Guide………………………………………………….……………………………………. 6 SUB-STRAND 1: NUMBER PATTERNS ……………...….……….……………..……….. -
Estimating Indirect Parental Genetic Effects on Offspring Phenotypes Using Virtual Parental Genotypes Derived from Sibling and Half Sibling Pairs
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959114; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Estimating indirect parental genetic effects on offspring phenotypes using virtual parental genotypes derived from sibling and half sibling pairs Liang-Dar Hwang#1, Justin D Tubbs#2, Justin Luong1, Gunn-Helen Moen1,3, Pak C Sham*2,5,6, Gabriel Cuellar-Partida*1, David M Evans*1,7 1The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia 2Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China 3Institute of Clinical Medicine, University of Oslo 4Population Health Science, Bristol Medical School, University of Bristol, UK. 5Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China 6State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong SAR, China 7Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK #Joint first authors *Joint senior authors Corresponding author: David M Evans Email: [email protected] Telephone: +61 7 3443 7347 Address: University of Queensland Diamantina Institute Level 7, 37 Kent St Translational Research Institute Woolloongabba, QLD 4102 Australia bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.959114; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Collection of Problems on Smarandache Notions", by Charles Ashbacher
Y ---~ y (p + 1,5(p + 1)) p p + 1 = Ex-b:u.s "1:T::n.i."'I7ex-lI!d.~ Pre._ •Va.:U. ~996 Collect;io:n. of Problern..s O:n. Srn..a.ra:n.dache N"o"i;io:n.s Charles Ashbacher Decisio:n.rn..a.rk 200 2:n.d A:v-e. SE Cedar Rapids, IA. 52401 U"SA Erhu.s U":n.i"V"ersity Press Vall 1996 © Cha.rles Ashbacher & Erhu.s U":n.i"V"ersity Press The graph on the first cover belongs to: M. Popescu, P. Popescu, V. Seleacu, "About the behaviour of some new functions in the number theory" (to appear this year) . "Collection of Problems on Smarandache Notions", by Charles Ashbacher Copyright 1996 by Charles Ashbacher and Erhus University Press ISBN 1-879585-50-2 Standard Address Number 297-5092 Printed in the United States of America Preface The previous volume in this series, An Introduction to the Smarandache Function, also by Erhus Cniversity Press, dealt almost exclusively with some "basic" consequences of the Smarandache function. In this one, the universe of discourse has been expanded to include a great many other things A Smarandache notion is an element of an ill-defined set, sometimes being almost an accident oflabeling. However, that takes nothing away from the interest and excitement that can be generated by exploring the consequences of such a problem It is a well-known cliche among writers that the best novels are those where the author does not know what is going to happen until that point in the story is actually reached. -
Diffie-Hellman Key Exchange
Public Key Cryptosystems - Diffie Hellman Public Key Cryptosystems - Diffie Hellman Get two parties to share a secret number that no one else knows Public Key Cryptosystems - Diffie Hellman Get two parties to share a secret number that no one else knows Receiver Sender Public Key Cryptosystems - Diffie Hellman Get two parties to share a secret number that no one else knows Can only use an insecure communications channel for exchange Receiver Sender Attacker Public Key Cryptosystems - Diffie Hellman Get two parties to share a secret number that no one else knows Can only use an insecure communications channel for exchange p,g Receiver Sender p: prime & (p-1)/2 prime g: less than p n = gk mod p Attacker for all 0<n<p and some k (see http://gauss.ececs.uc.edu/Courses/c6053/lectures/Math/Group/group.html) Public Key Cryptosystems - Diffie Hellman A safe prime p: p = 2q + 1 where q is also prime Example: 479 = 2*239 + 1 If p is a safe prime, then p-1 has large prime factor, namely q. If all the factors of p-1 are less than logcp, then the problem of solving the discrete logarithm modulo p is in P (it©s easy). Therefore, for cryptosystems based on discrete logarithm (such as Diffie-Hellman) it is required that p-1 has at least one large prime factor. Public Key Cryptosystems - Diffie Hellman A strong prime p: p is large p-1 has large prime factors (p = aq+1 for integer a and prime q) q-1 has large prime factors (q = br+1 for integer b, prime r) p+1 has large prime factors. -
(Premium Quality) 50.00 $ 1 PL30 Sentence Analysis
CR25.PW Upper Elementary Classroom (9-12) - Premium Quality Updated DecemBer 30, 2019 Qty Code Name Price LANGUAGE 1 PL29 Sentence Analysis: First Chart and Box (Premium Quality) $ 50.00 1 PL30 Sentence Analysis Chart (Premium Quality) $ 130.00 1 PL31 Set of Arrows and Circles for Sentence Analysis (Premium Quality) $ 15.00 MATHEMATICS & GEOMETRY 1 M29-5 Large Fraction Skittles (Set Of 5) $75.00 1 M100 Metal Inscribed And Concentric Figures $110.00 1 PM01 Binomial Cube (Premium Quality) $70.00 1 PM02 Trinomial Cube (Premium Quality) $110.00 1 PM34 Cut Out Fraction Labels (1-10) $160.00 1 PM15 Cut Out Fraction Labels (12-24) $75.00 1 M135 Equivalent Figure Material $275.00 1 M145 Theorem of Pythagoras $180.00 1 PM04.A Algebraic Trinomial Cube (Premium Quality) $110.00 1 PM42 Fraction Circles (Premium Quality) $200.00 1 PM43 Fraction Squares (Premium Quality) $200.00 1 PM55 Banker Game (Premium Quality) $55.00 1 PM58 Cubing Material (Premium Quality) $850.00 1 PM59 Colored Counting Bars (Premium Quality) $200.00 1 PM60 Flat Bead Frame (Premium Quality) $50.00 1 PM61 Numbers with Symbols (Premium Quality) $110.00 1 PM62 Small Square Root Board (Premium Quality) $56.00 1 PM64 Checker Board Beads (Premium Quality) $85.00 1 PM65 Checker Board Number Tiles w/ Box (Premium Quality) $37.00 1 PM66 Five Yellow Prisms for Volume with Wooden Cubes (Premium Quality) $85.00 1 PM67 Yellow Triangles for Area (Premium Quality) $115.00 1 PM68 Long Division Material (Premium Quality) $190.00 1 PM72 Power of Two Cube (Premium Quality) $70.00 1 PM72.A Power -
CLASS-VII CHAPTER-4 Exponents and Powers Part - 1
CLASS-VII CHAPTER-4 Exponents and powers Part - 1 An exponent or power is a mathematical representation that indicates the number of times that a number is multiplied by itself. An exponent or power is a mathematical representation that indicates the number of times that a number is multiplied by itself . If a number is multiplied by itself m times, then it can be written as: a x a x a x a x a...m times = a m Here, a is called the base , and m is called the exponent, power or index. Numbers raised to the power of two are called square numbers. Square numbers are also read as two-square, three-square, four-square, five-square, and so on. Numbers raised to the power of three are called cube numbers. Cube numbers are also read as two-cube, three-cube, four-cube, five-cube, and so on. Negative numbers can also be written using exponents. If a n = b, where a and b are integers and n is a natural number , then a n is called the exponential form of b. The factors of a product can be expressed as the powers of the prime factors . This form of expressing numbers using exponents is called the prime factor product form of exponents. Even if we interchange the order of the factors , the value remains the same. So a raised to the power of x multiplied by b raised to the power of y, is the same as b raised to the power of y multiplied by a raised to the power of x. -
Differences of Harmonic Numbers and the $ Abc $-Conjecture
Differences of Harmonic Numbers and the abc-Conjecture N. da Silva, S. Raianu, and H. Salgado∗ Dedicated to the memory of Laurent¸iu Panaitopol (1940-2008) Abstract - Our main source of inspiration was a talk by Hendrik Lenstra on harmonic numbers, which are numbers whose only prime factors are two or three. Gersonides proved 675 years ago that one can be written as a difference of harmonic numbers in only four ways: 2-1, 3-2, 4-3, and 9-8. We investigate which numbers other than one can or cannot be written as a difference of harmonic numbers and we look at their connection to the abc- conjecture. We find that there are only eleven numbers less than 100 that cannot be written as a difference of harmonic numbers (we call these ndh-numbers). The smallest ndh-number is 41, which is also Euler's largest lucky number and is a very interesting number. We then show there are infinitely many ndh-numbers, some of which are the primes congruent to 41 modulo 48. For each Fermat or Mersenne prime we either prove that it is an ndh-number or find all ways it can be written as a difference of harmonic numbers. Finally, as suggested by Lenstra in his talk, we interpret Gersonides' theorem as \The abc-conjecture is true on the set of harmonic numbers" and we expand the set on which the abc-conjecture is true by adding to the set of harmonic numbers the following sets (one at a time): a finite set of ndh-numbers, the infinite set of primes of the form 48k + 41, the set of Fermat primes, and the set of Mersenne primes.