SEABIRD TISSUE ARCHIVAL and MONITORING PROJECT: Egg Collections and Analytical Results for 2002-2005

Total Page:16

File Type:pdf, Size:1020Kb

SEABIRD TISSUE ARCHIVAL and MONITORING PROJECT: Egg Collections and Analytical Results for 2002-2005 NISTIR 7562 SEABIRD TISSUE ARCHIVAL AND MONITORING PROJECT: Egg Collections and Analytical Results for 2002-2005 Stacy S. Vander Pol1 Paul R. Becker1 Rusty D. Day1 Michael B. Ellisor1 Aurore Guichard1 Amanda J. Moors1 David Point1 Rebecca S. Pugh1 David G. Roseneau2 1U.S. Department of Commerce 2U.S. Department of the Interior National Institute of Standards and Technology U.S. Fish and Wildlife Service Chemical Science and Technology Laboratory Alaska Maritime National Wildlife Refuge Analytical Chemsitry Division Homer, AK 99603 Hollings Marine Laboratory Charleston, SC 29412 NISTIR 7562 SEABIRD TISSUE ARCHIVAL AND MONITORING PROJECT: Egg Collections and Analytical Results for 2002-2005 Stacy S. Vander Pol1 Paul R. Becker1 Rusty D. Day1 Michael B. Ellisor1 Aurore Guichard1 Amanda J. Moors1 David Point1 Rebecca S. Pugh1 David G. Roseneau2 1U.S. Department of Commerce National Institute of Standards and Technology Hollings Marine Laboratory Charleston, SC 29412 2U.S. Department of the Interior U.S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge Homer, AK 99603 February 2009 Erratum: Glaucous gull eggs were not collected from the Penny River delta, but rather at a colony approximately 24 km to the west-northwest in the Sinuk River delta. This correction does not affect the findings of the report. Table of Contents List of Tables ................................................................................................................................. iii List of Figures ................................................................................................................................ iii List of Appendices ......................................................................................................................... iv Acknowledgements ....................................................................................................................... vii Disclaimer ..................................................................................................................................... vii Abbreviations ............................................................................................................................... viii Abstract .......................................................................................................................................... ix INTRODUCTION .......................................................................................................................... 1 METHODS ..................................................................................................................................... 5 Study Area and Sampling Sites ................................................................................................... 5 Collecting Protocols and Egg Collecting Kits ............................................................................ 9 Sample Processing and Banking ............................................................................................... 10 Analysis for Persistent Organic Pollutants (POPs) ................................................................... 10 Analysis for Mercury (total, inorganic, and organic mercury) ................................................. 13 Analysis for Organotin Compounds ......................................................................................... 14 Statistical Methods .................................................................................................................... 14 RESULTS ..................................................................................................................................... 15 Persistent Organic Pollutants (POPs)........................................................................................ 15 Mercury (including organomercury) ......................................................................................... 29 Organotin Compounds .............................................................................................................. 32 DISCUSSION ............................................................................................................................... 35 Persistent Organic Pollutants (POPs)........................................................................................ 35 Mercury (including organomercury) ......................................................................................... 41 Organotin Compounds .............................................................................................................. 46 CONCLUSIONS........................................................................................................................... 47 RECOMMENDATIONS .............................................................................................................. 48 LITERATURE CITED ................................................................................................................. 50 ii List of Tables Table 1. The 1999-2005 Seabird Tissue Archival and Monitoring Project (STAMP) seabird egg collection sites ................................................................................................................................. 7 Table 2. Egg clutches banked by the Seabird Tissue Archival and Monitoring Project (STAMP) 8 Table 3. Mass fractions of POPs in glaucous gull and glaucous-winged gull eggs ...................... 27 Table 4. Mass fractions of MBT, DBT, TBT and ∑BT in common and thick-billed murre eggs and glaucous and glaucous-winged gull eggs collected in the Bering and Chukchi seas and Gulf of Alaska during 1999-2005, and brown pelican eggs obtained in the Charleston, South Carolina vicinity in 2005 ............................................................................................................................. 33 Table 5. Mass fractions of selected organic contaminants in Alaskan common murre eggs compared to values reported from Stora Karlsö in the Baltic Sea ................................................ 39 Table 6. Mass fractions of total mercury in common and thick-bill murre eggs from Alaska, California, Norway, and Russia. ................................................................................................... 42 List of Figures Figure 1. The 1999-2005 Seabird Tissue Archival and Monitoring Project (STAMP) seabird egg collection sites ................................................................................................................................. 6 Figure 2. Murre and gull sampling sites compared during this study. ............................................ 9 Figure 3. Percent lipid in common murre eggs collected at 10 Alaskan colonies ........................ 16 Figure 4. Mass fractions of POPs in Gulf of Alaska common murre eggs collected in 2003 and 2004............................................................................................................................................... 17 Figure 5. Mass fractions of POPs in Bering Sea common murre eggs collected in 2005 ............ 18 Figure 6. Mass fractions of POPs in thick-billed murre eggs collected in 2002 .......................... 19 Figure 7. Mass fractions of POPs in common murre eggs collected over several years at St. Lazaria, East Amatuli, and Bogoslof islands ................................................................................ 21 Figure 8. Principal components analysis for common murre eggs. .............................................. 22 Figure 9. Mass fractions of POPs in the Bogoslof Island common murre eggs collected in 2005 with and without outlier Egg ID 863 ............................................................................................ 23 Figure 10. Principal components analysis for thick-billed and common murre eggs ................... 24 Figure 11. Mass fractions of POPs in glaucous gull and glaucous-winged gull eggs collected in 2005............................................................................................................................................... 26 Figure 12. Principal components analysis for glaucous gull and glaucous-winged gull eggs ...... 28 Figure 13. Percentages of methylmercury contributing to total mercury in murre and gull eggs 29 Figure 14. Mass fractions of mercury in individual murre and gull eggs ..................................... 30 Figure 15. Mass fractions of mercury in murre and gull eggs by species and geographic location. ....................................................................................................................................................... 31 iii Figure 16. Mass fractions of mercury in common murre eggs collected in 2005 from coastal mainland colonies in Norton Sound compared with other mainland and coastal colonies in the Bering and Chukchi seas ............................................................................................................... 31 Figure 17. Mass fractions of MBT, DBT, TBT and ∑BT in murre and gull eggs from colonies in the Bering and Chukchi seas and Gulf of Alaska ......................................................................... 34 Figure 18. BuSn mass fractions in Gulf of Alaska common and thick-billed murre eggs ........... 34 Figure 19. Mass fractions of POPs in common murre eggs collected at Alaskan colonies during 2003-2005 and the 1970s .............................................................................................................. 38 Figure 20. Mass fractions
Recommended publications
  • Results of the March 2018 Acoustic-Trawl Survey of Walleye
    Alaska Fisheries Science Center National Marine Fisheries Service U.S DEPARTMENT OF COMMERCE AFSC PROCESSED REPORT 2018-07 Results of the March 2018 Acoustic-Trawl Survey of Walleye Pollock (Gadus chalcogrammus) Conducted in the Southeastern Aleutian Basin Near Bogoslof Island, Cruise DY2018-02 December 2018 This report does not constitute a publication and is for information only. All data herein are to be considered provisional. This document should be cited as follows: McKelvey, D., and M. Levine. 2018. Results of the March 2018 acoustic-trawl surve y of walleye pollock (Gadus chalcogrammus) conducted in the Southeastern Aleutian Basin near Bogoslof Island, Cruise DY2018-027. AFSC Processed Rep. 2018-07, 44 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattl e WA 98115. Available at http://www.afsc.noaa.gov/Publications/ProcRpt/PR2018-07.pdf. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. Results of the March 2018 Acoustic-Trawl Survey of Walleye Pollock (Gadus chalcogrammus) Conducted in the Southeastern Aleutian Basin Near Bogoslof Island, Cruise DY2018-02 by D. McKelvey and M. Levine December 2018 THIS INFORMATION IS DISTRIBUTED SOLELY FOR THE PURPOSE OF PRE- DISSEMINATION PEER REVIEW UNDER APPLICABLE INFORMATION QUALITY GUIDELINES. IT HAS NOT BEEN FORMALLY DISSEMINATED BY NOAA FISHERIES/ALASKA FISHERIES SCIENCE CENTER AND SHOULD NOT BE CONSTRUED TO REPRESENT ANY AGENCY DETERMINATION OR POLICY ABSTRACT Scientists from the Alaska Fisheries Science Center conducted an acoustic-trawl survey in early March 2018 to estimate the abundance of pre-spawning walleye pollock (Gadus chalcogrammus) in the southeastern Aleutian Basin near Bogoslof Island.
    [Show full text]
  • Growth of the Northern Fur Seal Colony on Bogoslof Island, Alaska THOMAS R
    ARCTIC VOL. 42, NO. 4 (DECEMBER 1989) P. 368-312 Growth of the Northern Fur Seal Colony on Bogoslof Island, Alaska THOMAS R. LOUGHLIN' and R.V. MILLER' (Received 14 March 1989; accepted in revised form 10 May 1989) ABSTRACT. Northern fur seal, Callorhinus ursinus, pups were first observed on Bogoslof Island, southeast Bering Sea, in 1980. By 1988 the population had grown at a rate of 57Vo.yr" to over 400 individuals, including 80+ pups, 159 adult females, 22 territorial males, and 188 subadult males. Some animals originated from rookeries of the CommanderIslands, whereas others are probably from thePribilof Islands. In 1983 and 1985 over 50% of the females were estimated to be > 6 years of age, based on vibrissae color. The rookery is in the same location where solitary male fur seals were seen in 1976 and 1979 and is adjacent to a large northern sea lion rookery. Key words: Bogoslof Island, northern fur seal, Callorhinus ursinus, northern sea lion, breeding colony RBSUMÉ. Des bébés otaries à fourrure, Callorhinus ursinus, ont été observés pour la premiere fois sur Bogoslof Island, au sud-est de la mer de Béring en 1980. En 1988, la population avait augmenté à un tauxde 57 %.an" et dépassait les 400 individus. Parmi eux, on comptait 80 bébés ou plus, 159 femelles adultes, 22 mâles possédant un territoire et 188 jeunes adultes mâles. Certains animaux venaient des colonies des îles du Commandeur, alors que d'autres venaient probablement des îles Pribilof. En 1983 et 1985, on a estimé que plus de 50 To des femelles avaient plus de 6 ans, en se fondant sur lacouleur de leurs vibrisses.
    [Show full text]
  • Port of Nome Modification Feasibility Study Nome, Alaska
    Draft Integrated Feasibility Report and Supplemental Environmental Assessment Port of Nome Modification Feasibility Study Nome, Alaska December 2019 This page left blank intentionally. Draft Integrated Feasibility Report and Supplemental Environmental Assessment Port of Nome Modification Feasibility Study Nome, Alaska Prepared by U.S. Army Corps of Engineers Alaska District December 2019 This page left blank intentionally. Port of Nome Modification Feasibility Study Draft Integrated Feasibility Report and Supplemental Environmental Assessment EXECUTIVE SUMMARY This General Investigations study is being conducted under authority granted by Section 204 of the Flood Control Act of 1948, which authorizes a study of the feasibility for development of navigation improvements in various harbors and rivers in Alaska. This study is also utilizing the authority of Section 2006 of WRDA, 2007, Remote and Subsistence Harbors, as modified by Section 2104 of the Water Resources Reform and Development Act of 2014 (WRRDA 2014) and further modified by Section 1105 of WRDA 2016. Section 2006 states that the Secretary may recommend a project without demonstrating that the improvements are justified solely by National Economic Development (NED) benefits, if the Secretary determines that the improvements meet specific criteria detailed in the authority. Additionally, Section 1202(c)(3) of WRDA 2016 “Additional Studies, Arctic Deep Draft Port Development Partnerships” allows for the consideration of transportation cost savings benefits to national security. The proposed port modifications intend to improve navigation efficiency to reduce the costs of commodities critical to the viability of communities in the region. This study has been cost-shared, with 50 % of the study funding provided by the non-Federal sponsor, which is the City of Nome, per the Federal Cost Share Agreement.
    [Show full text]
  • Technical Memorandum Moonlight Wells Protection Area
    TECHNICAL MEMORANDUM MOONLIGHT WELLS PROTECTION AREA NOME, ALASKA BEESC Project No. 25071 June 2005 Prepared for: City of Nome Nome Joint Utility System P.O. Box 281 P.O. Box 70 Nome, Alaska 99762 Nome, Alaska 99762 2000 W. International Airport Road, #C‐1 Anchorage, Alaska 99502 Phone (907) 563‐0013 Fax (907) 563‐6713 Final Technical Memorandum Moonlight Wells Protection Area BEESC Project No. 25071 TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS..................................................................................... i TECHNICAL MEMORANDUM.................................................................................................1 REFERENCE................................................................................................................................4 TABLE Table 1 Moonlight Wells Information ...................................................................................2 FIGURES Figure 1 Site Location Figure 2 Proposed Moonlight Wells Protection Area Figure 3 B-B’ Crosssection Figure 4 A-A’ Crosssection Figure 5 Moonlight Wells Protection Area and Land Status APPENDICES Appendix A Geology and Geophysics of the Moonlight Wells Area Appendix B Well Logs ACRONYMS AND ABBREVIATIONS BEESC Bristol Environmental & Engineering Services Corporation bgs below ground surface June 2005 i Revision 3 Final Technical Memorandum Moonlight Wells Protection Area BEESC Project No. 25071 TECHNICAL MEMORANDUM The City of Nome obtains drinking water from a groundwater source located at Moonlight Springs. Moonlight Springs is located approximately 3 miles north of the Nome airport (see Figure 1). The City of Nome currently obtains water from three wells located in a fractured marble formation. The purpose of this technical memorandum is to define the protection area of the marble aquifer associated with the three drinking water wells and to identify potential activities that could impact the aquifer within the protection area. Prior to 2001, Nome obtained drinking water from a collection gallery located at Moonlight Springs.
    [Show full text]
  • Some Alaskan Notes
    270 GABRIELSON,SomeAlaskan Notes L[Auk April SOME ALASKAN NOTES BY IRA N. GABRIELSON (Concluded[romp. 150) CALn*ORNIAMumu•, Uria aalgecali[ornica (Bryant).--This was prob- ably the mostabundant species observed on the trip. We did not see California Murres until we reachedSeward (June 10) where there was a large colony associatedwith the still more numerousPacific Kittiwakes.The deepwater at the baseof the cliff allowedus to drift the boat closeand in the clear depthswe could see the birds literally flyingunder the water as expertlyas fishes. Often they came to the surface,saw the boat, and instantly dived again. The great coloniesof the Semidisand Kagamil Island were the largest,composed largely or entirely of this species. In the former island group, wheneverwe approachedthe precipitouscliffs dosely enough to see distinctly,we found every available shelf and nook crowdedwith tourres. At Kagamil Island we traveledin the 'Brown Bear' for at least two miles along cliffs similarly occupied,and the water was covered with birds. These were two of the most impressiveof the bird coloniesseen on the trip. On BogoslofIsland an almostequally large concentra- tion of tourrescontained both this speciesand the next. PALLAS'SMumu•, Uria lornvia arra (Pallas).--Thisnorthern species was first found on BogoslofIsland (June 24). At St. GeorgeIsland (July 8) and St. Paul Island (July 4-6) Pallas's Murre was common,while at Walrus Island (July 7) the enormous murre colony was comprisedlargely, if not entirely, of this species. I saw only one bird there that I thought was a California Murre and it movedaway before I couldbe sure. Pallas'sMurre wasabundant also at St.
    [Show full text]
  • Geology of Umnak and Bogoslof Islands Aleutian Islands Alaska
    Geology of Umnak and Bogoslof Islands Aleutian Islands Alaska By F. M. BYERS, JR. INVESTIGATIONS OF ^ALASKAN VOLCANOES GEOLOGICAL SURVEY BULLETIN 1028-L Prepared in cooperation with the Office, Chief of Engineers, U.S. Army UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. PEEFACE In October 1945 the War Department (now Department of the Army) requested the Geological Survey to undertake a program of volcano investigations in the Aleutian Islands-Alaska Peninsula area. Field studies under general direction of G. D. Robinson, were begun as soon as weather permitted in the spring of 1946. The results of the first year's field, laboratory, and library work were assembled as two administrative reports. Part of the data was published in 1950 in Geological Survey Bulletin 974-B, "Volcanic Activity in the Aleutian Arc", by Robert R. Coats. The rest of the data has been included in Bulletin 1028. The geologic investigations covered by this report were recon­ naissance. The factual information presented is believed to be accu­ rate, but many of the tentative interpretations and conclusions will be modified as the investigations continue and knowledge grows. The investigations of 1946 were supported almost entirely by the Military Intelligence Division of the Office, Chief of Engineers, U.S. Army. The Geological Survey is indebted to that Office for its early recognition of the value of geologic studies in the Aleutian region, which made this report possible, and for its continuing support.
    [Show full text]
  • THE ALEUTIAN ISLANDS: THEIR PEOPLE and NATURAL HISTORY
    SMITHSONIAN INSTITUTION WAR BACKGROUND STUDIES NUMBER TWENTY-ONE THE ALEUTIAN ISLANDS: THEIR PEOPLE and NATURAL HISTORY (With Keys for the Identification of the Birds and Plants) By HENRY B. COLLINS, JR. AUSTIN H. CLARK EGBERT H. WALKER (Publication 3775) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION FEBRUARY 5, 1945 BALTIMORE, MB., U„ 8. A. CONTENTS Page The Islands and Their People, by Henry B. Collins, Jr 1 Introduction 1 Description 3 Geology 6 Discovery and early history 7 Ethnic relationships of the Aleuts 17 The Aleutian land-bridge theory 19 Ethnology 20 Animal Life of the Aleutian Islands, by Austin H. Clark 31 General considerations 31 Birds 32 Mammals 48 Fishes 54 Sea invertebrates 58 Land invertebrates 60 Plants of the Aleutian Islands, by Egbert H. Walker 63 Introduction 63 Principal plant associations 64 Plants of special interest or usefulness 68 The marine algae or seaweeds 70 Bibliography 72 Appendix A. List of mammals 75 B. List of birds 77 C. Keys to the birds 81 D. Systematic list of plants 96 E. Keys to the more common plants 110 ILLUSTRATIONS PLATES Page 1. Kiska Volcano 1 2. Upper, Aerial view of Unimak Island 4 Lower, Aerial view of Akun Head, Akun Island, Krenitzin group 4 3. Upper, U. S. Navy submarine docking at Dutch Harbor 4 Lower, Village of Unalaska 4 4. Upper, Aerial view of Cathedral Rocks, Unalaska Island 4 Lower, Naval air transport plane photographed against peaks of the Islands of Four Mountains 4 5. Upper, Mountain peaks of Kagamil and Uliaga Islands, Four Mountains group 4 Lower, Mount Cleveland, Chuginadak Island, Four Mountains group ..
    [Show full text]
  • Controls on Fishing Behavior on the Nome River
    CONTROLS ON FISHING BEHAVIOR ON THE NOME RIVER Jim Magdanz and Annie Olanna Technical Paper No. 102 Alaska Department of Fish and Game Division of Subsistence Nome, Alaska February 1984 ABSTRACT Very few chum salmon were observed escaping upriver to spawn in the Nome River in 1982 and 1983. Attempts to close a portion of the river to net fishing met strong opposition in 1980. The problem is how to effectively manage fishing without causing unnecessary hardship or disruption. The objectives of this study were (1) to describe the history of the Nome River fishery from earliest records (about 1880) through the present and (2) to -identify factors that control fishing behavior among Nome River fishers today. Special attention is given to ..= controls other than Fish and Game regulations; these controls were labeled "internal" controls. Before the gold rush to Nome in 1899, the Nome River was the site of a small, perhaps seasonal, settlement of Inupiat Eskimo. During the gold rush, the Inupiat were displaced by gold miners and the U.S. Army, (who built a fort at the river mouth). After the army closed Fort Davis in 1921 and mining slowed in the thirties, fishing and other subsistence activities again became the primary use of the river. During World War II, mining virtually ceased. Inupiat immigrants to Nome -- principally from the western Seward Peninsula -- established a camp at the mouth of the river on the site of old Fort Davis. Following statehood in 1959, commercial salmon fisheries began to develop in the area. The Nome subdistrict commercial salmon fishery, however, was quite small until 1974.
    [Show full text]
  • Historically Active Volcanoes of Alaska Reference Deck Activity Icons a Note on Assigning Volcanoes to Cards References
    HISTORICALLY ACTIVE VOLCANOES OF ALASKA REFERENCE DECK Cameron, C.E., Hendricks, K.A., and Nye, C.J. IC 59 v.2 is an unusual publication; it is in the format of playing cards! Each full-color card provides the location and photo of a historically active volcano and up to four icons describing its historical activity. The icons represent characteristics of the volcano, such as a documented eruption, fumaroles, deformation, or earthquake swarms; a legend card is provided. The IC 59 playing card deck was originally released in 2009 when AVO staff noticed the amusing coincidence of exactly 52 historically active volcanoes in Alaska. Since 2009, we’ve observed previously undocumented persistent, hot fumaroles at Tana and Herbert volcanoes. Luckily, with a little help from the jokers, we can still fit all of the historically active volcanoes in Alaska on a single card deck. We hope our users have fun while learning about Alaska’s active volcanoes. To purchase: http://doi.org/10.14509/29738 The 54* volcanoes displayed on these playing cards meet at least one of the criteria since 1700 CE (Cameron and Schaefer, 2016). These are illustrated by the icons below. *Gilbert’s fumaroles have not been observed in recent years and Gilbert may be removed from future versions of this list. In 2014 and 2015, fieldwork at Tana and Herbert revealed the presence of high-temperature fumaroles (C. Neal and K. Nicolaysen, personal commu- nication, 2016). Although we do not have decades of observation at Tana or Herbert, they have been added to the historically active list.
    [Show full text]
  • Subsistence Land Use in Nome, a Northwest Alaska Regional Center
    JamesMagdanzardAnnieOlanna Technical Pam No. 148 Tics researchwas partM~y,suppo~ byANILafed@ralaidfurds~~ the U.S. Fish arxi Wildlife Service Anchorage, Alaska Division of subsistence AlaskaDepartmerrtofFishandGame Juneau, Alaska 1986 This study documented areas used for hunting, fishing, and gathering wild rescxllces by a sample of 46 households inNome, Alaska. The study purposes were: (1) to document the extent of areas used by None residents, and (2)to compare areas usedby membersofd.ifferentName~ties. Nome, with 3,876 residents in 1985, was the largest oommuni*innorthweest+skaandwastentimesaslaKgeasany conununiw which had existed in the local area before 1850. Nly 25 percent of the 15,000 people in Northwest Alaska lived in Nome. Nome was a regional oenter for~government, transportation, ardretailtrade. Namewasapolyglatcammunitywitha59percent Eskimo majority (many of whom had moved to Nome from smaller communities in the region). Minorities (some ofwhomhadlived in Nome all their lives) included whites, blacks, asians, and hispanics. Previous studies have shown that nearly allhouse- holds inNomeharvestedatleastsomewildrescxlrces. Thisstudyf~thatNomekharvestareasweretwotothree timesaslargeashawest areas forothersmallercommunities in theregia Roads facilitatedharvestirg, especiallyofmooseand plank Thesampledhauseholdsharvestedthroqh&thesouthern Seward Peninsula from Wales to cape Darby, throughout Norton Sound, and in the Bering Strait. A majority of the households With~orspcrusesborninother~~w~Alaskacommunities alsor&urnedtothosecommunitiestoharvestwildresaurces.
    [Show full text]
  • Marine Bird Surveys at Bogoslof Island, Alaska, in 2005
    AMNWR 05/18 MARINE BIRD SURVEYS AT BOGOSLOF ISLAND, ALASKA, IN 2005 Photo: Paul Hillman Heather M. Renner and Jeffrey C. Williams Key Words: Aleutian Islands, black-legged kittiwake, Bogoslof Island, Fratercula cirrhata, National Natural Landmark, pelagic cormorant, Phalacrocorax pelagicus, Phalacrocorax urile, red-faced cormorant, red-legged kittiwake, Rissa brevirostris, Rissa tridactyla, tufted puffin Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, Alaska 99603 September 2005 Cite as: Renner, H.M. and J.C. Williams. 2005. Marine bird surveys at Bogoslof Island, Alaska, in 2005. U.S. Fish and Wildl. Serv. Rep. AMNWR 05/18. Bogoslof Island is an important breeding site for seabirds and marine mammals in the southeastern Bering Sea. It was designated as a National Wildlife Refuge in 1909 (administered by the U.S. Fish and Wildlife Service) and as a National Natural Landmark in 1967 (administered by the National Park Service). The National Marine Fisheries Service has primary responsibility for Steller sea lions and Northern fur seals, the two main species of marine mammals using the island. Furthermore, Bogoslof has been a site for ecological research and geological study. As a result of the multi-agency interests in the area, periodic surveys of the status of wildlife at Bogoslof have been conducted (e.g., Byrd et al. 1980, Loughlin and Miller 1989, Byrd and Williams 1993, Byrd and Williams 1994, Byrd and Williams 1997, Ream et al. 2000, Robson 1999, Byrd and Williams 1999, Byrd et al. 2001, Byrd and Williams 2004). Typically visits to Bogoslof have been of only 1 or 2 days duration, because ship support is needed and there has seldom been adequate funding to remain in the area longer.
    [Show full text]
  • 10 Aleutian Islands
    10/18: LME FACTSHEET SERIES ALEUTIAN ISLANDS LME tic LMEs Arc ALEUTIAN ISLANDS LME MAP 18 of North Pacific Ocean Map Aleutian Islands (USA & Russia) LME Bering Sea Alaska Bering Iceland Strait Russia 10 "1 ARCTIC LMEs Large ! Marine Ecosystems (LMEs) are defined as regions of work of the ArcMc Council in developing and promoMng the ocean space of 200,000 km² or greater, that encompass Ecosystem ApproacH to management of the ArcMc marine coastal areas from river basins and estuaries to the outer environment. margins of a conMnental sHelf or the seaward extent of a predominant coastal current. LMEs are defined by ecological Joint EA Expert group criteria, including bathymetry, HydrograpHy, producMvity, and PAME establisHed an Ecosystem ApproacH to Management tropically linked populaMons. PAME developed a map expert group in 2011 with the parMcipaMon of other ArcMc delineaMng 17 ArcMc Large Marine Ecosystems (ArcMc LME's) Council working groups (AMAP, CAFF and SDWG). THis joint in the marine waters of the ArcMc and adjacent seas in 2006. Ecosystem ApproacH Expert Group (EA-EG) Has developed a In a consultaMve process including agencies of ArcMc Council framework for EA implementaMon wHere the first step is member states and other ArcMc Council working groups, the idenMficaMon of the ecosystem to be managed. IdenMfying ArcMc LME map was revised in 2012 to include 18 ArcMc the ArcMc LMEs represents this first step. LMEs. THis is the current map of ArcMc LMEs used in the This factsheet is one of 18 in a series of the Arc?c LMEs. OVERVIEW: ALEUTION ISLANDS LME The Aleu(an Islands is a c u r v e d v o l c a n i c archipelago extending from the Alaska Peninsula to the Komandorskiye Islands off Kamchatka, south of the Bering Sea.
    [Show full text]