Review Article Ganglioside Biochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Ganglioside Biochemistry International Scholarly Research Network ISRN Biochemistry Volume 2012, Article ID 506160, 36 pages doi:10.5402/2012/506160 Review Article Ganglioside Biochemistry Thomas Kolter Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany Correspondence should be addressed to Thomas Kolter, [email protected] Received 18 September 2012; Accepted 9 October 2012 Academic Editors: H. Itoh and B. Penke Copyright © 2012 Thomas Kolter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized. 1. Introduction 2. Structure and Nomenclature Together with glycoproteins and glycosaminoglycans, gly- In their structures, gangliosides combine a glycan and a lipid cosphingolipids (GSLs) contribute to the glycocalyx that portion and contribute to both, the cellular lipidome and covers eukaryotic cell surfaces. Gangliosides are sialic acid- the glycome/sialome [15]. A great variety of carbohydrate containing glycosphingolipids and provide a significant part sequences are found within the GSLs [16], including the of cell surface glycans on neuronal cells. GSLs are lipids gangliosides [17]. Although carbohydrate residues of dif- that contain a sphingoid base and one or more sugar ferent structure, linkage, and anomeric configuration occur residues [1]. Sialic acids (Figure 1) are nine-carbon sugars in GSLs, only a limited number of the so-called series biosynthetically formed from N-acetylmannosamine and with characteristic carbohydrate sequences are found within phosphoenolpyruvate [2, 3]. With a mean pKA value of evolutionary related organisms (Table 1). Within the gan- around 2.6, they are more acidic than the majority of gliosides, sialic acids can be attached only to a few of the GSL carboxylic acids and negatively charged at most physiological series, in adult mammals especially to the ganglio series. pH values. The name “ganglioside” was coined by the Among the sialic acids, N-acetylneuraminic acid is the German biochemist Klenk (1896–1971) and assigned to a most frequently found member in humans, but also N- group of acidic GSLs that he isolated from ganglion cells glycolylneuraminic acid is abundant in many other species [4, 5] and from the brains of patients who suffered from (Figure 1). A total of more than 50 different sialic acids the so-called amaurotic idiocy [6, 7]. Sialic acid was first have been described [18, 19]. They can be O-acetylated isolated from submaxillary mucin in 1936 [8]. Its structure in positions 4, 7, or 9 [20], but also N-deacetylated, O- was elucidated in the nineteen fifties by different groups and methylated, sulfated, or modified by lactonization [21] (see it was found to be identical to that of the N-acetylneuraminic Figure 8). acid isolated by Klenk and Faillard. The first structure of a ThenomenclatureofGSLsspecifiestheglycanpart ganglioside was elucidated in 1963 by Kuhn and Wiegandt of these lipids. Two ganglioside nomenclature systems are [9]. In 1962, Svennerholm suggested a nomenclature of brain currently in use to assign names to the corresponding struc- gangliosides [10, 11]. The biochemical defects underlying tures. Most researches prefer the short-hand nomenclature the diseases formerly known as amaurotic idiocy, GM1- according to Svennerholm, which was initially based on gangliosidosis [12], Tay-Sachs- [13], and Sandhoff disease the migration order of ganglio-series gangliosides in chro- [14] were identified by Sandhoff and others in the 1960s. matography [10]. Later on, it has been extended to other 2 ISRN Biochemistry OH HOOC OH HOOC HO O OH HO O OH HN H3C HN HO HO HO HO HO O O N-acetyl-α-neuraminic acid N-glycolyl-α-neuraminic acid (Neu5Ac) (Neu5Gc) Figure 1: Sialic acids. Table 1: GSL series. and GD1c have a “b” and “c” in their names, although Series Core structure both are 0-series gangliosides (see the scheme of ganglioside biosynthesis, Figure 12). GM4 is a gala-series ganglioside, Arthro GlcNAcβ1,3Manβ1,4Glcβ1,1Cer although the “G” suggests ganglio series. Figure 2 shows the α β Gala Gal 1,4Gal 1,1 Cer structure of ganglioside GQ1b, one of the most abundant β β β Neogala Gal 1,6Gal 1,6Gal 1,1 Cer gangliosides in adult human brain (G = ganglio series, Q = 4 Ganglio Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1,1 Cer sialic acids, 5 − 1 = 4neutralcarbohydrateresidues,andb- Globo GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1Cer series = 2 sialic acids attached to the “inner” galactose). Isoglobo GalNAcβ1,3Galα1,3Galβ1,4Glcβ1,1Cer Ganglioside core structures can be additionally modi- Lacto Galβ1,3GlcNAcβ1,3Galβ1,4Glcβ1,1Cer fied; they can be elongated, such as in GD1aGalNAc [25] Neolacto Galβ1,4GlcNAcβ1,3Galβ1,4Glcβ1,1Cer (Figure 3). This ganglioside occurs, for example, on spinal Muco Galβ1,3Galβ1,4Galβ1,4Glcβ1,1Cer neurons [26, 27] and can give rise to autoantibodies as a Mollu Fucα1,4GlcNAcβ1,2Manα1,3Manβ1,4Glcβ1,1Cer cause of variant forms of the Guillain-Barre´ syndrome [28, 29] and other neuropathies [30]. A modified GM2 derivative Schisto GalNAcβ1,4Glcβ1,1Cer that contains taurine in amide linkage to the sialic acid car- β β β Spirometo Gal 1,4Glc 1,3Gal 1,1 Cer boxyl group has been identified in the brain of patients with Tay-Sachs disease [31]. Hybrid-type GSLs and gangliosides with postglycosylation modifications add further complexity root structures. The more comprehensive IUPAC system to this substance class [32]. As an example, lacto-ganglio [22] is less frequently applied. According to Svennerholm, hybrid-type gangliosides have been identified in bovine brain a core structure of neutral sugars define the name of [33]. a respective series, in which the pyranose forms of D- Most gangliosides found in adult mammals belong to the galactose (Gal), D-N-Acetyl-glucosamine (GlcNAc), or D- ganglio, gala, lacto, and neolacto series. Ganglioside GM4 N-Acetylgalactosamine (GalNAc) are attached in defined (Figure 3), a member of the gala series, has the structure order and linkage to lactosylceramide (Galβ1,4Glcβ1Cer) NeuAcα2,3Galβ1Cer and is often found with an α-hydroxy- or β-galactosylceramide (Galβ1Cer). The names contain fatty acid within the ceramide moiety. During development, information about the series (“G” = ganglio, “L” = lacto), also gangliosides with other core structures are transiently the number of sialic acids (“A” = 0, “M” =1, “D” = 2, “T” = formed, such as the stage-specific embryonic antigen SSEA- 3, “Q” = 4, “P” = 5, “H” = 6, “S” = 7), and, indirectly, 4, a ganglioside of the globo series [34](Figure 4). In adults, on the number of uncharged carbohydrates: initially it has globo-series gangliosides occur on human erythrocytes [35], been assumed that this number cannot exceed 5, so that in human kidney [36], and on various stem cells [37]. For the name “ganglioside GM1” indicates that this ganglioside example, SSEA-4, but not SSEA-3 or Globo-H (Figure 4), contains (5 − “1” = 4) neutral sugars of the ganglio series. is expressed in cord blood-derived mesenchymal stem cells This series is defined by the sequence Galβ1-3GalNAcβ1- [24]. 4Galβ1-4GlcCer. Sialic acids can be attached once, twice, or With the exception of echinoderms (marine organisms severalfold to different positions within the core structures. of typically pentaradial symmetry), gangliosides are usually Most often, they are found in α2,3-linkage to the “inner” absent from invertebrates. Arthropods, for example, form or “outer” galactosyl residue, and in α2,8-linkage to other acidic GSLs with a Manβ1,4Glcβ1,1Cer core, which contain sialic acids. Ganglioside GM1 bears one sialic acid moiety glucuronic acid instead of sialic acids. For gangliosides of connected to the 3-OH-group of the galactosyl residue in echinoderms [38–42], there is no systematic short-hand position II of the gangliotetraose moiety (see also Figure 7). nomenclature. They show structural features uncommon to The corresponding IUPAC-IUBMB short-hand name is mammalian gangliosides, such as sialic acid residues within 3 II Neu5AcGg4Cer. Structures of ganglio-series gangliosides the oligosaccharide moieties (e.g., LG-2, Figure 5), α2,11- can also be derived from the scheme of ganglioside biosyn- linked sialic acids (e.g., LLG-5, Figure 5), sialic acid methy- thesis (see below; Figure 12). In general, ganglio-series GSLs lation or sulfation, or a glycosyl inositolphosphoceramide of the 0-series bear no sialic acids on the galactose in position core, for example, [43, 44]. In cultured neurons, echinoder- II, of the a-series bear one, of the b-series bear two, and of mal gangliosides show neuritogenic and growth-inhibitory the c-series bear three sialic acid residues. However, GM1b activities. In this regard, they are more potent than other ISRN Biochemistry 3 IV III OH HO HO OH O OH Ceramide 1 HOOC HO O 3 O COOH 3 O O 2 2 OH1 II I AcHN O O HO 8 AcHN 1 O OH OH HO HO OH 1 OH HOOC O AcHN HO (CH2) CH3 OH HO O O O 12 O 2 3 1 O HN (CH2)16CH3 8 OH 4 OH HOOC 2 O AcHN OH O OH O OH Ganglioside GQ1b HO NHAcOH HO Figure 2: Structure of GQ1b, one of the most abundant gangliosides in adult human brain, which is involved in long term potentiation, synaptic plasticity, and improvement of cognitive function [23]. OH OH HO O AcHN O OH OH O OH HOOC O O O HO O OH AcHN O OH OH HO OH AcHN OH HOOC O HO OH HO O (CH2)12CH3 O O O O HN (CH2)16CH3 HO OH OH AcHN OH O OH Ganglioside GD1aGalNAc OH OH HO COOH OH O O O (CH ) CH AcHN 2 12 3 O HN OH OH HO OH (CH2) CH3 O 21 Ganglioside GM4 OH Figure 3: GD1aGalNAc and GM4.
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • The Neutral Glycosphingolipid Globotriaosylceramide Promotes Fusion Mediated by a CD4-Dependent CXCR4-Utilizing HIV Type 1 Envelope Glycoprotein
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14435–14440, November 1998 Medical Sciences The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein ANU PURI*, PETER HUG*, KRISTINE JERNIGAN*, JOSEPH BARCHI†,HEE-YONG KIM‡,JILLON HAMILTON‡, i JOE¨LLE WIELS§,GARY J. MURRAY¶,ROSCOE O. BRADY¶, AND ROBERT BLUMENTHAL* *Section of Membrane Structure and Function, Laboratory of Experimental and Computational Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD 21702; †Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute and ¶Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; ‡Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852; and §Centre National de la Recherche Scientifique Unite´Mixte de Recherche 1598, Institut Gustave Roussy, Villejuif Cedex 94805, France Contributed by Roscoe O. Brady, September 25, 1998 ABSTRACT Previously, we showed that the addition of enabling individual HIV strains to choose between alternate human erythrocyte glycosphingolipids (GSLs) to nonhuman modes of entry into cells. CD41 or GSL-depleted human CD41 cells rendered those cells The GSL hypothesis is based on a number of observations, susceptible to HIV-1 envelope glycoprotein-mediated cell fu- including recovery of fusion of nonsusceptible cells after sion. Individual components in the GSL mixture were isolated transfer of protease- and heat-resistant components from by fractionation on a silica-gel column and incorporated into human erythrocytes (12, 13), physicochemical studies on the the membranes of CD41 cells.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • Occurrence of Sulfatide As a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1
    J. Biochem. 102, 83-92 (1987) Occurrence of Sulfatide as a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1 Atsushi HARA and Tamotsu TAKETOMI Department of Lipid Biochemistry, Institute of Cardiovascular Disease , Shinshu University School of Medicine, Matsumoto , Nagano 390 Received for publication, February 12, 1987 Glycosphingolipids in serum and lipoproteins from Watanabe hereditable hyper li pidemic rabbit (WHHL rabbit), which is an animal model for human familial hypercholesterolemia (FH), were analyzed for the first time in this study . Chylo microns and very low density, low density, and high density lipoproteins contained sulfatide as a major glycosphingolipid (12nmol/ƒÊmol total phospholipids (PL) in chylomicrons, 19nmol/ƒÊmol PL in VLDL, 18nmol/ƒÊmol PL in LDL, and 14nmol/ƒÊ mol PL in HDL) with other minor glycosphingolipids such as glucosylceramide, galactosylceramide, GM3 ganglioside, lactosylceramide, and globotriaosylceramide. The concentration of sulfatide as a major glycosphingolipid in WHHL rabbit serum (121nmol/ml) was much higher than that in normal rabbit serum (3nmol/ml). Fatty acids of the sulfatides comprised mainly nonhydroxy fatty acids (C22, 23, and 24) and significant amounts of hydroxy fatty acids (about 10%), whereas long chain bases of the sulfatides comprised mostly (4E)-sphingenine with a significant amount of 4D-hydroxysphinganine (about 10%). Furthermore, sulfatides in the liver and small intestine from normal and WHHL rabbits (where serum lipoproteins are produced) were determined to amount to 260nmol/g liver in WHHL rabbit, 104 nmol/g liver in control rabbit, 99.6nmol/g small intestine in WHHL rabbit, and 31.2nmol/g small intestine in control rabbit. Ceramide portions of the sulfatides in the liver were mainly composed of (4E)-sphingenine and nonhydroxy fatty acids, while those in the small intestine were mainly composed of 4D-hydroxysphinganine and hydroxy fatty acids.
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • Ceramide and Related Molecules in Viral Infections
    International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A.
    [Show full text]
  • Gb3 and Lyso-Gb3 and Fabry Disease
    O H 5 OH OH C17 3 O OH OH O OH NH H C13H27 O O HAc O O N O O O O OH O OH O O OH H H HO O H CO2 H O CO2 AcHN HO HO O O H AcHN O H HO CO2 O H O C 2 O HO H O O H H AcHN O H HO O H cHN O A HO OH N E W S L E T T E R F O R G LY C O / S P H I N G O L I P I D R E S E A R C H D E C E M B E R Gb 2 0 1 9 3 and lyso -Gb 3 and Fabry Disease males. Fabry disease is a multi Fabry disease is caused by deficiency-systemic in the xalpha age of sphingolipids such as lyso -linked disorder with variable prevalence ranging from 1:3000 to 1:117000 in newborn Enzyme replacement therapy (ERT) of the disease has been available since 2001. Several studies support the clinical benefit o towards quality of life, disease progression,-Gb3 and andGb3 stabilization and-galactosidase galabiosyl of endceramide enzyme. organ (Ga2)structure Decrease in organs, and in alphafunction. tissues, and biological fluids. Thurberg 2 evaluated 48 Fabry patients on ERT and found good correlation of urinary Gb3 excretion normalized to creatine. However other studies indicated incomplete relationships between plasma and urinary Gb3 levels and disease-galactosidase manifestations. enzyme Recently, leads to the sto group 3 postulated Gb3 metabolite could play a role in Fabry pathogenesis and reposted the presence of lyso lyso-Gb3 were found in the plasma of Fabry patients and concentrations were reduced after ERT.
    [Show full text]
  • List of Compounds 2018 年12 月
    List of Compounds 2018 年12 月 長良サイエンス株式会社 Nagara Science Co., Ltd. 〒501-1121 岐阜市古市場 840 840 Furuichiba, Gifu 501-1121, JAPAN Phone : +81-58-234-4257、Fax : +81-58-234-4724 E-mail : [email protected] 、http : //www.nsgifu.jp Storage Product Name・Purity・Molecular Formula=Molecular Weight・〔 CAS Quantity Source Code No. C o n di t i o n s Registry Number 〕 ・Price ( JPY ) NH020102 2-10 ℃ (-)-Epicatechin [ (-)-EC ] ≧99% (HPLC) 10mg 8,000 NH020103 C15H14O6 = 290.27 〔490-46-0〕 100mg 44,000 NH020202 2-10 ℃ (-)-Epigallocatechin [ (-)-EGC ] ≧99% (HPLC) 10mg 12,000 NH020203 C15H14O7 = 306.27 〔970-74-1〕 100mg 66,000 NH020302 2-10 ℃ (-)-Epicatechin gallate [ (-)-ECg ] ≧99% (HPLC) 10mg 12,000 NH020303 C22H18O10 = 442.37 〔1257-08-5〕 100mg 52,000 NH020403 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧98% (HPLC) 100mg 12,000 〔 〕 C22H18O11 = 458.37 989-51-5 NH020602 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧99% (HPLC) 20mg 12,000 NH020603 C22H18O11 = 458.37 〔989-51-5〕 100mg 30,000 NH020502 2-10 ℃ (+)-Catechin hydrate [ (+)-C ] ≧99% (HPLC) 10mg 5,000 NH020503 C15H14O6 ・H2O = 308.28 〔88191-48-4〕 100mg 32,000 NH021102 2-10 ℃ (-)-Catechin [ (-)-C ] ≧98% (HPLC) 10mg 23,000 C15H14O6 = 290.27 〔18829-70-4〕 NH021202 2-10 ℃ (-)-Gallocatechin [ (-)-GC ] ≧98% (HPLC) 10mg 34,000 〔 〕 C15H14O7 = 306.27 3371-27-5 NH021302 - ℃ ≧ 10mg 34,000 2 10 (-)-Catechin gallate [ (-)-Cg ] 98% (HPLC) C22H18O10 = 442.37 〔130405-40-2〕 NH021402 2-10 ℃ (-)-Gallocatechin gallate [ (-)-GCg ] ≧98% (HPLC) 10mg 23,000 C22H18O11 = 458.37 〔4233-96-9〕 NH021502 2-10 ℃ (+)-Epicatechin [ (+)-EC
    [Show full text]
  • Mouse Model of GM2 Activator Deficiency Manifests Cerebellar Pathology and Motor Impairment
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8138–8143, July 1997 Medical Sciences Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment (animal modelyGM2 gangliosidosisygene targetingylysosomal storage disease) YUJING LIU*, ALEXANDER HOFFMANN†,ALEXANDER GRINBERG‡,HEINER WESTPHAL‡,MICHAEL P. MCDONALD§, KATHERINE M. MILLER§,JACQUELINE N. CRAWLEY§,KONRAD SANDHOFF†,KINUKO SUZUKI¶, AND RICHARD L. PROIA* *Section on Biochemical Genetics, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, ‡Laboratory of Mammalian Genes and Development, National Institute of Child Health and Development, and §Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; †Institut fu¨r Oganische Chemie und Biochemie der Universita¨tBonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; and ¶Department of Pathology and Laboratory Medicine, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 Communicated by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, May 12, 1997 (received for review March 21, 1997) ABSTRACT The GM2 activator deficiency (also known as disorder, the respective genetic lesion results in impairment of the AB variant), Tay–Sachs disease, and Sandhoff disease are the the degradation of GM2 ganglioside and related substrates. major forms of the GM2 gangliosidoses, disorders caused by In humans, in vivo GM2 ganglioside degradation requires the defective degradation of GM2 ganglioside. Tay–Sachs and Sand- GM2 activator protein to form a complex with GM2 ganglioside. hoff diseases are caused by mutations in the genes (HEXA and b-Hexosaminidase A then is able to interact with the activator- HEXB) encoding the subunits of b-hexosaminidase A.
    [Show full text]
  • VIEW Open Access T-Cell Metabolism in Autoimmune Disease Zhen Yang1, Eric L Matteson2, Jörg J Goronzy1 and Cornelia M Weyand1*
    Yang et al. Arthritis Research & Therapy (2015) 17:29 DOI 10.1186/s13075-015-0542-4 REVIEW Open Access T-cell metabolism in autoimmune disease Zhen Yang1, Eric L Matteson2, Jörg J Goronzy1 and Cornelia M Weyand1* Abstract Cancer cells have long been known to fuel their pathogenic growth habits by sustaining a high glycolytic flux, first described almost 90 years ago as the so-called Warburg effect. Immune cells utilize a similar strategy to generate the energy carriers and metabolic intermediates they need to produce biomass and inflammatory mediators. Resting lymphocytes generate energy through oxidative phosphorylation and breakdown of fatty acids, and upon activation rapidly switch to aerobic glycolysis and low tricarboxylic acid flux. T cells in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) have a disease-specific metabolic signature that may explain, at least in part, why they are dysfunctional. RA T cells are characterized by low adenosine triphosphate and lactate levels and increased availability of the cellular reductant NADPH. This anti-Warburg effect results from insufficient activity of the glycolytic enzyme phosphofructokinase and differentiates the metabolic status in RA T cells from those in cancer cells. Excess production of reactive oxygen species and a defect in lipid metabolism characterizes metabolic conditions in SLE T cells. Owing to increased production of the glycosphingolipids lactosylceramide, globotriaosylceramide and monosialotetrahexosylganglioside, SLE T cells change membrane raft formation and fail to phosphorylate pERK, yet hyperproliferate. Borrowing from cancer metabolomics, the metabolic modifications occurring in autoimmune disease are probably heterogeneous and context dependent. Variations of glucose, amino acid and lipid metabolism in different disease states may provide opportunities to develop biomarkers and exploit metabolic pathways as therapeutic targets.
    [Show full text]
  • The Kidney in Fabry Disease: More Than ª the Author(S) 2016 DOI: 10.1177/2326409816648169 Mere Sphingolipids Overload Iem.Sagepub.Com
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–5 The Kidney in Fabry Disease: More Than ª The Author(s) 2016 DOI: 10.1177/2326409816648169 Mere Sphingolipids Overload iem.sagepub.com Herna´n Trimarchi, MD, PhD1 Abstract Fabry disease is a rare cause of end-stage renal disease. Renal pathology is notable for diffuse deposition of glycosphingolipid in the renal glomeruli, tubules, and vasculature. Classical patients with mutations in the a-galactosidase A gene accumulate globotriaosylceramide and become symptomatic in childhood with pain, gastrointestinal disturbances, angiokeratoma, and hypohidrosis. Classical patients experience progressive loss of renal function and hypertrophic cardiomyopathy, with severe clinical events including end-stage renal disease, stroke, arrhythmias, and premature death. The pathophysiological mechanisms by which endothelial cells, podocytes, smooth muscle cells, and tubular dysfunction occur in Fabry disease are poorly characterized and understood. This review evaluates the new evidence in pathophysiology of Fabry nephropathy, highlighting the necessity of early identification of individuals with Fabry disease. Keywords Fabry disease, globotriaosylceramide, podocyte, nitric oxide, angiotensin II Introduction of Gl3 in the endothelium and within the arterial wall, mainly in smooth muscle cells. This Gl3 and lyso-Gl3 accumulation Fabry disease is an X-linked genetic disorder of glycosphingo- in the endothelium leads to a secondary decrease in nitric lipid catabolism resulting from deficient activity of the lysoso- oxide (NO) synthesis and a trend to microthrombotic events mal enzyme a-galactosidase A (a-gal A). As a consequence, that lead to local ischemic events. In this regard, 2 primary the substrates of a-gal A, which are neutral glycosphingolipids, hypotheses have emerged to explain the pathogenesis of this mainly globotriaosylceramide (Gl3) and lyso-Gl3, accumulate vasculopathy.
    [Show full text]
  • Late-Onset Tay-Sachs Disease: Phenotypic Characterization and Genotypic Correlations in 21 Affected Patients Orit Neudorfer1, Gregory M
    February 2005 ⅐ Vol. 7 ⅐ No. 2 article Late-onset Tay-Sachs disease: Phenotypic characterization and genotypic correlations in 21 affected patients Orit Neudorfer1, Gregory M. Pastores1,2, Bai J. Zeng1, John Gianutsos3, Charles M. Zaroff4, and Edwin H. Kolodny1 Purpose: The purpose of this study was to describe the phenotype (and corresponding genotype) of adult patients with late-onset Tay-Sachs disease, a clinical variant of the GM2-gangliosidoses. Methods: A comprehensive physical examination, including neurological assessments, was performed to establish the current disease pattern and severity. In addition, the patients’ past medical histories were reviewed. The patients’ ␣-subunit mutations (␤-Hexosaminidase A genotype) were determined and correlated with their corresponding clinical findings and disease course. Results: Twenty-one patients (current mean age: 27.0 years; range: 14–47 years) were identified. The pedigree revealed a relative with the “classic” infantile or late-onset form of Tay-Sachs disease in four (out of 18) unrelated families. The patients were predominantly male (15/21 individuals) and of Ashkenazi Jewish ancestry (15/18 families). Mean age at onset was 18.1 years; balance problems and difficulty climbing stairs were the most frequent presenting complaints. In several cases, the diagnosis was delayed (mean age at diagnosis: 27.0 years). Analysis of the ␤-hex A gene revealed the G269S mutation as the most common disease allele; found in homozygosity (N ϭ 1) or heterozygosity (N ϭ 18; including 2 sib pairs). Disease onset (age 36 years) was delayed and progression relatively slower in the homozygous G269S patient. Two siblings (ages 28 and 31 years), of non-Jewish ancestry, were compound heterozygotes (TATC1278/W474C); their clinical course is dominated by psychiatric problems.
    [Show full text]