Neural Crest Cells Regulate Optic Cup Morphogenesis by Promoting Extracellular Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genetic Basis of Mammalian Neurulation
REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm. -
Semaphorin3a/Neuropilin-1 Signaling Acts As a Molecular Switch Regulating Neural Crest Migration During Cornea Development
Developmental Biology 336 (2009) 257–265 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development Peter Y. Lwigale a,⁎, Marianne Bronner-Fraser b a Department of Biochemistry and Cell Biology, MS 140, Rice University, P.O. Box 1892, Houston, TX 77251, USA b Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA article info abstract Article history: Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues Received for publication 2 April 2009 including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over Revised 11 September 2009 the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal Accepted 6 October 2009 differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that Available online 13 October 2009 semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down- Keywords: Semaphorin3A regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives Neuropilin-1 rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the Neural crest periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that Cornea inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that Lens phenocopies lens ablation. -
Homocysteine Intensifies Embryonic LIM3 Expression in Migratory Neural Crest Cells: a Quantitative Confocal Microscope Study
University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2014 Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study Jordan Naumann University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2014 Jordan Naumann Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Biology Commons Recommended Citation Naumann, Jordan, "Homocysteine intensifies embryonic LIM3 expression in migratory neural crest cells: A quantitative confocal microscope study" (2014). Dissertations and Theses @ UNI. 89. https://scholarworks.uni.edu/etd/89 This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Copyright by JORDAN NAUMANN 2014 All Rights Reserved HOMOCYSTEINE INTENSIFIES EMBRYONIC LIM3 EXPRESSION IN MIGRATORY NEURAL CREST CELLS – A QUANTITATIVE CONFOCAL MICROSCOPE STUDY An Abstract of a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Jordan Naumann University of Northern Iowa May 2014 ABSTRACT Elevated levels of homocysteine in maternal blood and amniotic fluid are associated with cardiovascular, renal, skeletal, and endocrine diseases and also with embryonic malformations related to neural crest cells. Neural crest cells are necessary for the formation of tissues and organs throughout the body of vertebrate animals. The migration of neural crest cells is essential for proper development of the target tissues. When migration is disrupted, abnormalities may occur. -
Bilayered Optic Cup Is Defined Anatomically by The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 398 ABSTRACTS / Developmental Biology 295 (2006) 393–402 bilayered optic cup is defined anatomically by the presence of 198 the prospective neural retina (NR) in the distal layer and the Characterization of silica spicule formation during the retinal pigmented epithelium (RPE) proximally. Accordingly, resuscitation and in vitro cell culture of molecular markers accompany morphogenesis by restricting Hymeniacidon perleve their expression to definite compartments. For instance, in the Wei Zhang 1, Xupeng Cao 2, Xingju Yu 1 optic cup, the prospective neural retina expresses Chx10, and the 1 Marine Bioproducts Engineering Group, Dalian Institute of RPE, Mitf. However, to facilitate identification of definite events Chemical Physics, Chinese Academy of Sciences, during oculogenesis, there remains a need to identify additional Dalian, China markers of optical development. Thus, we performed here a 2 Graduate School of the Chinese Academy of Sciences, screen for Wnt ligands that are expressed during eye develop- Beijing, China ment. Specifically, we examined the expression of Wnt1, Wnt3, Wnt4-1 and Wnt5A during chick optic vesicles stages up to optic The biogenic silica mineralization in an intertidal marine cup formation. Of these four genes, only Wnt5A was consis- sponge Hymeniacidon perleve (Porifera: Demospongiae) has tently expressed in the dorsal optic cup. Although Wnt1, Wnt3 been investigated during the developmental process over one and Wnt4-1 were present in the developing nervous system, year period and in an in vitro sponge cell culture. Tissue neither was found in the optic vesicle or cup. -
Stages of Embryonic Development of the Zebrafish
DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope. -
Hox Genes Make the Connection
Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Establishing neuronal circuitry: Hox genes make the connection James Briscoe1 and David G. Wilkinson2 Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK The vertebrate nervous system is composed of a vast meres maintain these partitions. Each rhombomere array of neuronal circuits that perceive, process, and con- adopts unique cellular and molecular properties that ap- trol responses to external and internal cues. Many of pear to underlie the spatial organization of the genera- these circuits are established during embryonic develop- tion of cranial motor nerves and neural crest cells. More- ment when axon trajectories are initially elaborated and over, the coordination of positional identity between the functional connections established between neurons and central and peripheral derivatives of the hindbrain may their targets. The assembly of these circuits requires ap- underlie the anatomical and functional registration be- propriate matching between neurons and the targets tween MNs, cranial ganglia, and the routes of neural they innervate. This is particularly apparent in the case crest migration. Cranial neural crest cells derived from of the innervation of peripheral targets by central ner- the dorsal hindbrain migrate ventral-laterally as discrete vous system neurons where the development of the two streams adjacent to r2, r4, and r6 to populate the first tissues must be coordinated to establish and maintain three branchial arches (BA1–BA3), respectively, where circuits. A striking example of this occurs during the they generate distinct skeletal and connective tissue formation of the vertebrate head. -
Bmps and Ventral Optic Cup Differentiation 3163
Development 129, 3161-3171 (2002) 3161 Printed in Great Britain © The Company of Biologists Limited 2002 DEV1795 The role of bone morphogenetic proteins in the differentiation of the ventral optic cup Ruben Adler1 and Teri L. Belecky-Adams2,* 1The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 2Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA *Author for correspondence (e-mail: [email protected]) Accepted 20 March 2002 SUMMARY The ventral region of the chick embryo optic cup undergoes stages of development, this treatment resulted in a complex process of differentiation leading to the microphthalmia with concomitant disruption of the formation of four different structures: the neural retina, developing neural retina, RPE and lens. At optic cup the retinal pigment epithelium (RPE), the optic disk/optic stages, however, noggin overexpression caused colobomas, stalk, and the pecten oculi. Signaling molecules such as pecten agenesis, replacement of the ventral RPE by retinoic acid and sonic hedgehog have been implicated neuroepithelium-like tissue, and ectopic expression of optic in the regulation of these phenomena. We have now stalk markers in the region of the ventral retina and RPE. investigated whether the bone morphogenetic proteins This was frequently accompanied by abnormal growth of (BMPs) also regulate ventral optic cup development. Loss- ganglion cell axons, which failed to enter the optic nerve. of-function experiments were carried out in chick embryos The data suggest that endogenous BMPs have significant in ovo, by intraocular overexpression of noggin, a protein effects on the development of ventral optic cup structures. that binds several BMPs and prevents their interactions with their cognate cell surface receptors. -
Molecular Regulation of Visual System Development: More Than Meets the Eye
Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Molecular regulation of visual system development: more than meets the eye Takayuki Harada,1,2 Chikako Harada,1,2 and Luis F. Parada1,3 1Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA; 2Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan Vertebrate eye development has been an excellent model toderm, intercalating mesoderm, surface ectoderm, and system to investigate basic concepts of developmental neural crest (Fig. 1). The neuroectoderm differentiates biology ranging from mechanisms of tissue induction to into the retina, iris, and optic nerve; the surface ecto- the complex patterning and bidimensional orientation of derm gives rise to lens and corneal epithelium; the me- the highly specialized retina. Recent advances have shed soderm differentiates into the extraocular muscles and light on the interplay between numerous transcriptional the fibrous and vascular coats of the eye; and neural crest networks and growth factors that are involved in the cells become the corneal stroma sclera and corneal en- specific stages of retinogenesis, optic nerve formation, dothelium. The vertebrate eye originates from bilateral and topographic mapping. In this review, we summarize telencephalic optic grooves. In humans, optic vesicles this recent progress on the molecular mechanisms un- emerge at the end of the fourth week of development and derlying the development of the eye, visual system, and soon thereafter contact the surface ectoderm to induce embryonic tumors that arise in the optic system. -
Specification and Formation of the Neural Crest: Perspectives on Lineage Segregation
Received: 3 November 2018 Revised: 17 December 2018 Accepted: 18 December 2018 DOI: 10.1002/dvg.23276 REVIEW Specification and formation of the neural crest: Perspectives on lineage segregation Maneeshi S. Prasad1 | Rebekah M. Charney1 | Martín I. García-Castro Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Summary California The neural crest is a fascinating embryonic population unique to vertebrates that is endowed Correspondence with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural Martín I. García-Castro, Division of Biomedical crest cells generate neurons and glia of the peripheral nervous system, and melanocytes Sciences, School of Medicine, University of California, Riverside, CA. throughout the body. However, the neural crest also generates many ectomesenchymal deriva- Email: [email protected] tives in the cranial region, including cell types considered to be of mesodermal origin such as Funding information cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the National Institute of Dental and Craniofacial formation of the vertebrate head, and are thought to be a key attribute at the center of verte- Research, Grant/Award Numbers: brate evolution and diversity. Further, aberrant neural crest cell development and differentiation R01DE017914, F32DE027862 is the root cause of many human pathologies, including cancers, rare syndromes, and birth mal- formations. In this review, we discuss the current -
Determining Role of the Optic Vesicle in Orbital and Periocular Development and Placement
Pediatr. Res., 14: 703-708 (1980) bony orbital structures optic nerve central nervous system defects periocular structures development Determining Role of the Optic Vesicle in Orbital and Periocular Development and Placement KENNETH LYONS JONES,"'" MARILYN C. HIGGINBOTTOM. AND DAVID W. SMITH Deparlmenr of Pedrarrics. Universi,~of California. Sun Diego School of Medicine, La Jolla. California 92093 [K. L. J.. M. C. II.], and D~~~.~morphologsUnit. Deparlmenr c$ Pediatrics. Universit~sof Washington School of Medicine. Searrle. Washington. USA ID. W. S.1 Summary Data from both animal and human studies have suggested that these structures are to a great extent independently derived (3, 6). Nine patients with aberrations in development and placement of The purpose of this report is to present evidence from nine patients the eyes and periocular structures who also had serious defects in with aberrations in development and placement of their eyes that central nervous system development were evaluated in order to orbital and periocular structures are determined by the optic better understand normal ocular development. Included were an vesicle. a neural organ which is an outpouching of the forebrain. incompletely developed twin stillborn infant who lacked both eyes and the nose, a stillborn infant with cyclopia hypognathia. 6 PATIENTS AND METHODS OF INVESTIGATION spontaneous abortuses with varying degrees of holoprosencephaly, and a 17-year-old male with a serious defect in central nervous Details relative to development of the ocular, orbital. and system development whose right eye was positioned laterally above periocular structures are presented below and are documented in the right ear. In all cases, evidence indicates that orbital and Figures I to 8. -
I. Eye Development
Sara Thomasy DVM, PhD, DACVO Mouse Day 8 Dog Day 11 Eye Fields Mouse Day 7 Dog Day 10 Prosencephalon https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 8 Dog Day 12 Cyclopia Cyclopia - Formation of a single median globe Synophthalmia – Two incompletely separated or fused globes Concurrent severe craniofacial defects Veratrum californicum . Day 14 of gestation in sheep Steroidal alkaloids . Cyclopamine and jervine . Inhibit sonic hedgehog signal transduction during gastrulation Affects midline neural plate Corn Lily or False Hellebore Day 15 Optic vesicle Mouse Day 9.5 Optic stalk https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 9.5 Dog Day 15 Optic vesicle Microphthalmia Optic stalk https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Optic vesicle deficiency Corresponding small palpebral fissure Failure of normal optic cup growth . Failure of fusion of the choroid fissure → colobomas . Failure to establish normal IOP Associated with a myriad of ocular defects ASD PHPV Neural plate deficiency Cataract Retinal dysplasia Colobomatous malformations Merle ocular dysgenesis Intraretinal space Mouse Day 11 Dog Day 18 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Mouse Day 11 Iris coloboma Dog Day 18 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm “Defect” Failure of fusion of the choroid fissure “Typical colobomas” at the 6 o’clock position Abnormal differentiation of the outer optic cup “Atypical colobomas” at other locations Charlois Collie Collie Day 25 Mouse Day 11 https://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eye_htms/eyetoc.htm Persistent keratolenticular attachment Classic example: Peter’s anomaly Corneal opacity with stromal & DM defects (B) Persistent pupillary membrane (A) . -
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis
cells Review Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis Yu Ji 1,2,3,*, Hongyan Hao 3,4, Kurt Reynolds 1,2,3 , Moira McMahon 2,5 and Chengji J. Zhou 1,2,3,* 1 Department of Biochemistry and Molecular Medicine & Comprehensive Cancer Center, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA; [email protected] 2 Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA; [email protected] 3 Graduate Program of Biochemistry, Molecular, Cellular and Developmental Biology, University of California, Davis, CA 95616, USA; [email protected] 4 Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA 5 College of Letters & Science, University of California, Berkeley, CA 94720, USA * Correspondence: [email protected] (Y.J.); [email protected] (C.J.Z.); Tel.: +1-916-452-2268 (C.J.Z.) Received: 30 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer.