Mars Exploration Rover Opportunity End of Mission Report

Total Page:16

File Type:pdf, Size:1020Kb

Mars Exploration Rover Opportunity End of Mission Report JPL Publication 19-10 Mars Exploration Rover Opportunity End of Mission Report John L. Callas, Project Manager Matthew P. Golombek, Project Scientist Abigail A. Fraeman, Deputy Project Scientist Mars Exploration Rover Project Jet Propulsion Laboratory, California Institute of Technology National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California October 2019 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. © 2019 California Institute of Technology. U.S. Government sponsorship acknowledged. Mars Exploration Rover Project MER Opportunity – End of Mission Report Contents 1 ABSTRACT .............................................................................................................................1 2 SUMMARY OF MAJOR SCIENCE ACCOMPLISHMENTS OF THE MISSION ..............1 3 DETAILED RECENT SCIENCE ACCOMPLISHMENTS ....................................................6 3.1 Testing Hypotheses for the Origin and Evolution of Perseverance Valley ................6 3.2 Degradation Exposes Structural and Stratigraphic Complexities on Endeavour’s Rim ......................................................................................................................7 4 MISSION SUCCESS SCORE CARD ...................................................................................10 5 ROVER STATISTICS ...........................................................................................................11 5.1 Actuator Usage..........................................................................................................11 5.2 Drive Statistics ..........................................................................................................13 5.3 IDD Statistics ............................................................................................................14 5.4 Telecom Statistics .....................................................................................................14 5.5 Imaging Statistics ......................................................................................................15 5.6 Power Switch Statistics .............................................................................................15 5.7 Miscellaneous Statistics ............................................................................................16 6 ROVER ENGINEERING ASSESSMENT (PRIOR TO DUST STORM) ............................17 6.1 Right-Front Steering Actuator ..................................................................................17 6.2 Left-Front Steering Actuator .....................................................................................17 6.3 Right-Front Wheel Drive Actuator ...........................................................................18 6.4 IDD Joint 1 Actuator .................................................................................................18 6.5 IDD Flexcable ...........................................................................................................18 6.6 Rock Abrasion Tool ..................................................................................................19 6.7 Alpha Particle X-ray Spectrometer ...........................................................................19 6.8 Mössbauer Spectrometer ...........................................................................................19 6.9 Mini-TES ..................................................................................................................19 6.10 Cameras.....................................................................................................................20 6.11 IVP Vector Error .......................................................................................................20 6.12 Flash File System ......................................................................................................20 6.13 Other Issues ...............................................................................................................21 6.14 Other Components ....................................................................................................21 7 END OF MISSION ASSESSMENT ......................................................................................22 7.1 2018 Mars Planet-Encircling Dust Event at Perseverance Valley ............................22 7.2 Recovery Efforts .......................................................................................................24 7.3 MER fault behavior and modes ................................................................................28 7.4 Recovery strategies ...................................................................................................30 7.5 Commanding strategies and operations ....................................................................35 7.6 Why the vehicle was not recovered ..........................................................................40 i Mars Exploration Rover Project MER Opportunity – End of Mission Report 8 REFERENCES .......................................................................................................................42 9 APPENDIX: TEAM PUBLICATIONS LIST ............................................................................45 9.1 Spirit Publications .....................................................................................................45 9.2 Two-Rover Publications ...........................................................................................48 9.3 Opportunity Publications .........................................................................................52 ii Mars Exploration Rover Project MER Opportunity – End of Mission Report 1 Abstract The Mars Exploration Rover (MER) Opportunity landed on Meridiani Planum on 25 January 2004 for a prime mission designed to last three months (90 sols). After more than fourteen years operating on the surface of Mars, the last communication from Opportunity occurred on sol 5111 (10 June, 2018) when a major dust storm reduced power on the solar panels to the point where further communications were not possible. Following the cessation of the dust storm several weeks later, the MER project radiated over 1000 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing the Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on 12 February, 2019. It is the MER project’s assessment that the environmental window in which it would be most probable to recover Opportunity had passed by that time and that the rover would succumb to the extreme environmental conditions experienced during a winter on Mars. This report summarizes the major science accomplishments throughout the fourteen years of this mission, with a detailed focused on recent science accomplishments during the last extended mission (EM-11). This report also describes the mission engineering accomplishments and specific actions taken during the attempt to recover the vehicle after communications were lost during the major dust storm. 2 Summary of major science accomplishments of the mission The Mars Exploration Rover (MER) Opportunity landed on Meridiani Planum on January 25, 2004 and maintained communications with Earth until June 10, 2018, when a major dust storm reduced power on the solar panels to the point where further communications were not possible. Opportunity far exceeded its 90- sol primary mission and set records for longevity (5111 sols), distance traveled (~45 km, Fig. 2.1), and scientific discoveries for planetary rovers. This section highlights the scientific legacy derived from analysis of imaging and spectroscopic data acquired using Fig. 2.1: HiRISE image mosaic showing the complete traverse of Opportunity across Meridiani Planum and onto Endeavour Crater’s Opportunity’s instrument payload (22 km diameter) western rim segments. Names on the plains refer (Squyres et al., 2003). to craters examined by Opportunity to characterize Burns formation Opportunity was the first landed sulfate-bearing strata. Erebus Crater, not shown, is just north of mission to identify and characterize a Victoria Crater. sedimentary rock record on a planetary body other than Earth. The Burns formation, named in honor of Roger Burns, is a >> 10s of meters thick section of genetically related sedimentary rock that outcrops in the walls of craters and regional fractures throughout Meridiani Planum (Grotzinger et al., 2006). Opportunity documented the primary sedimentary features (e.g., bedding, grain size distributions) and 1 Mars Exploration Rover Project MER Opportunity – End of Mission Report diagenetic features of the Burns formation to determine ancient environmental conditions (Fig. 2.2). Opportunity data showed Fe-, Mg-, and Ca sulfates were present in the Burns formation, the first instance these minerals were detected on Mars. The presence of sulfate salts combined with sedimentary structure analyses supported a model of saline groundwaters ascending through the Noachian basement
Recommended publications
  • Geochemistry This
    TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)].
    [Show full text]
  • Quantitative Composition and Granulometry of Aeolian Bedforms in Endeavour and Gale Craters Inferred from Visible Near-Infrared Spectra
    45th Lunar and Planetary Science Conference (2014) 1431.pdf QUANTITATIVE COMPOSITION AND GRANULOMETRY OF AEOLIAN BEDFORMS IN ENDEAVOUR AND GALE CRATERS INFERRED FROM VISIBLE NEAR-INFRARED SPECTRA. Mathieu G.A. Lapotre1, Bethany L. Ehlmann1,2, Raymond E. Arvidson3. 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 3Department of Earth & Planetary Sciences, Washington University in St. Louis, MO, USA. Introduction: Modern Mars is a wind world. Its ing Spectrometer for Mars (CRISM) visible near- surface hosts a variety of aeolian features, such as line- infrared spectra (VISIR). The goal of this study is to ar, barchan and star dunes, ripples, granule ripples, compare inversions made from orbit to ground truth yardangs and ventifacts [1]. Even though active sand provided by instruments aboard Opportunity at En- transport was observed at the surface [2], it is not clear deavour Crater, Terra Meridiani and Curiosity in Gale whether all of the preserved aeolian bedforms are ac- crater. tive. In particular, transverse aeolian ridges have been We use Hapke’s bidirectional reflectance spectros- suggested to be remnant dunes that formed under past copy theory [6] to invert for optical constants of miner- climatic conditions [3]. als from laboratory spectra [e.g., 7, 8]. These are used Sand transport is largely controlled by the size and to compute single scattering albedos of mineral the density of the grains [4]. Moreover, dunes and rip- endmember components of varying grain sizes. We use ples form in unimodally distributed sand particles from an atmospheric radiative transfer approach, DISORT different instabilities, and the wavelengths of these [9], to correct the CRISM spectra for the effects of the different bedforms do not have the same dependence Martian atmosphere.
    [Show full text]
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Tianwen-1: China's Mars Mission
    Tianwen-1: China's Mars Mission drishtiias.com/printpdf/tianwen-1-china-s-mars-mission Why In News China will launch its first Mars Mission - Tianwen-1- in July, 2020. China's previous ‘Yinghuo-1’ Mars mission, which was supported by a Russian spacecraft, had failed after it did not leave the earth's orbit and disintegrated over the Pacific Ocean in 2012. The National Aeronautics and Space Administration (NASA) is also going to launch its own Mars mission in July, the Perseverance which aims to collect Martian samples. Key Points The Tianwen-1 Mission: It will lift off on a Long March 5 rocket, from the Wenchang launch centre. It will carry 13 payloads (seven orbiters and six rovers) that will explore the planet. It is an all-in-one orbiter, lander and rover system. Orbiter: It is a spacecraft designed to orbit a celestial body (astronomical body) without landing on its surface. Lander: It is a strong, lightweight spacecraft structure, consisting of a base and three sides "petals" in the shape of a tetrahedron (pyramid- shaped). It is a protective "shell" that houses the rover and protects it, along with the airbags, from the forces of impact. Rover: It is a planetary surface exploration device designed to move across the solid surface on a planet or other planetary mass celestial bodies. 1/3 Objectives: The mission will be the first to place a ground-penetrating radar on the Martian surface, which will be able to study local geology, as well as rock, ice, and dirt distribution. It will search the martian surface for water, investigate soil characteristics, and study the atmosphere.
    [Show full text]
  • Martian Eolian Dust Probed by Chemcam J
    Martian Eolian Dust Probed by ChemCam J. Lasue, A. Cousin, P.-y. Meslin, N. Mangold, R. Wiens, G. Berger, E. Dehouck, O. Forni, W. Goetz, O. Gasnault, et al. To cite this version: J. Lasue, A. Cousin, P.-y. Meslin, N. Mangold, R. Wiens, et al.. Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, American Geophysical Union, 2018, 45 (20), pp.10968– 10977. 10.1029/2018GL079210. hal-02349332 HAL Id: hal-02349332 https://hal.archives-ouvertes.fr/hal-02349332 Submitted on 10 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophysical Research Letters RESEARCH LETTER Martian Eolian Dust Probed by ChemCam 10.1029/2018GL079210 J. Lasue1 , A. Cousin1 , P.-Y. Meslin1 , N. Mangold2 , R. C. Wiens3 , G. Berger1 , Special Section: 4 1 5 1 6 7 Curiosity at the Bagnold Dunes, E. Dehouck , O. Forni , W. Goetz , O. Gasnault , W. Rapin , S. Schroeder , Gale crater: Advances in Mar- A. Ollila3 , J. Johnson8 , S. Le Mouélic2 , S. Maurice1 , R. Anderson9 , D. Blaney10 , tian eolian processes B. Clark11 , S. M. Clegg12 , C. d’Uston1, C. Fabre13, N. Lanza3 , M. B. Madsen14 , J. Martin-Torres15,16, N.
    [Show full text]
  • 4.1 Potential Facilities List FY 17-18
    FY 2017-2018 Annual Report Permittee Name: City of San José Appendix 4.1 FAC # SIC Code Facility Name St Num Dir St Name St Type St Sub Type St Sub Num 820 7513 Ryder Truck Rental A 2481 O'Toole Ave 825 3471 Du All Anodizing Company A 730 Chestnut St 831 2835 BD Biosciences A 2350 Qume Dr 840 4111 Santa Clara Valley Transportation Authority Chaboya Division A 2240 S 7th St 841 5093 Santa Clara Valley Transportation Authority - Cerone Division A 3990 Zanker Rd 849 5531 B & A Friction Materials, Inc. A 1164 Old Bayshore Hwy 853 3674 Universal Semiconductor A 1925 Zanker Rd 871 5511 Mercedes- Benz of Stevens Creek A 4500 Stevens Creek Blvd 877 7542 A.J. Auto Detailing, Inc. A 702 Coleman Ave 912 2038 Eggo Company A 475 Eggo Way 914 3672 Sanmina Corp Plant I A 2101 O'Toole Ave 924 2084 J. Lohr Winery A 1000 Lenzen Ave 926 3471 Applied Anodize, Inc. A 622 Charcot Ave Suite 933 3471 University Plating A 650 University Ave 945 3679 M-Pulse Microwave, Inc. A 576 Charcot Ave 959 3672 Sanmina Corp Plant II A 2068 Bering Dr 972 7549 San Jose Auto Steam Cleaning A 32 Stockton Ave 977 2819 Hill Bros. Chemical Co. A 410 Charcot Ave 991 3471 Quality Plating, Inc. A 1680 Almaden Expy Suite 1029 4231 Specialty Truck Parts Inc. A 1605 Industrial Ave 1044 2082 Gordon Biersch Brewing Company, Inc. A 357 E Taylor St 1065 2013 Mohawk Packing, Div. of John Morrell A 1660 Old Bayshore Hwy 1067 5093 GreenWaste Recovery, Inc.
    [Show full text]
  • Mars 2020 Radiological Contingency Planning
    National Aeronautics and Space Administration Mars 2020 Radiological Contingency Planning NASA plans to launch the Mars 2020 rover, produce the rover’s onboard power and to Perseverance, in summer 2020 on a mission warm its internal systems during the frigid to seek signs of habitable conditions in Mars’ Martian night. ancient past and search for signs of past microbial life. The mission will lift off from Cape NASA prepares contingency response plans Canaveral Air Force Station in Florida aboard a for every launch that it conducts. Ensuring the United Launch Alliance Atlas V launch vehicle safety of launch-site workers and the public in between mid-July and August 2020. the communities surrounding the launch area is the primary consideration in this planning. The Mars 2020 rover design is based on NASA’s Curiosity rover, which landed on Mars in 2012 This contingency planning task takes on an and greatly increased our knowledge of the added dimension when the payload being Red Planet. The Mars 2020 rover is equipped launched into space contains nuclear material. to study its landing site in detail and collect and The primary goal of radiological contingency store the most promising samples of rock and planning is to enable an efficient response in soil on the surface of Mars. the event of an accident. This planning is based on the fundamental principles of advance The system that provides electrical power for preparation (including rehearsals of simulated Mars 2020 and its scientific equipment is the launch accident responses), the timely availability same as for the Curiosity rover: a Multi- of technically accurate and reliable information, Mission Radioisotope Thermoelectric Generator and prompt external communication with the (MMRTG).
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Discovery of Silica-Rich Deposits on Mars by the Spirit Rover
    Ancient Aqueous Environments at Endeavour Crater, Mars Authors: R.E. Arvidson1, S.W. Squyres2, J.F. Bell III3, J. G. Catalano1, B.C. Clark4, L.S. Crumpler5, P.A. de Souza Jr.6, A.G. Fairén2, W.H. Farrand4, V.K. Fox1, R. Gellert7, A. Ghosh8, M.P. Golombek9, J.P. Grotzinger10, E. A. Guinness1, K. E. Herkenhoff11, B. L. Jolliff1, A. H. Knoll12, R. Li13, S.M. McLennan14,D. W. Ming15, D.W. Mittlefehldt15, J.M. Moore16, R. V. Morris15, S. L. Murchie17, T.J. Parker9, G. Paulsen18, J.W. Rice19, S.W. Ruff3, M. D. Smith20, M. J. Wolff4 Affiliations: 1 Dept. Earth and Planetary Sci., Washington University in Saint Louis, St. Louis, MO, 63130, USA. 2 Dept. Astronomy, Cornell University, Ithaca, NY, 14853, USA. 3 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. 4Space Science Institute, Boulder, CO 80301, USA. 5 New Mexico Museum of Natural History & Science, Albuquerque, NM 87104, USA. 6 CSIRO Computational Informatics, Hobart 7001 TAS, Australia. 7 Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada. 8 Tharsis Inc., Gaithersburg MD 20877, USA. 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. 10 Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA. 11 U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, USA. 12 Botanical Museum, Harvard University, Cambridge MA 02138, USA. 13 Dept. of Civil & Env. Eng. & Geodetic Science, Ohio State University, Columbus, OH 43210, USA. 14 Dept. of Geosciences, State University of New York, Stony Brook, NY 11794, USA.
    [Show full text]
  • Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates
    ACIDIC FLUIDS ACROSS MARS: DETECTIONS OF MAGNESIUM-NICKEL SULFATES. A. S. Yen1, D. W. Ming2, R. Gellert3, D. W. Mittlefehldt2, E. B. Rampe4, D. T. Vaniman5, L. M. Thompson6, R. V. Morris2, B. C. Clark7, S. J. VanBommel3, R. E. Arvidson8, 1JPL- Caltech ([email protected]), 2NASA-JSC, 3University of Guelph, 4Aerodyne Industries, 5Planetary Science Institute, 6University of New Brunswick, 7Space Science Insti- tute, 7Washington University in St. Louis. Introduction: Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni2+ co-precipitation with or substitution for Mg2+ from sulfate-saturated solutions. Nickel is ex- tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid- rock interactions at low pH. Fig 1: Histogram showing significant concentrations Mars Rovers: The Mars Exploration Rovers of sulfur in APXS analyses by the three Mars rovers (MER), Spirit and Opportunity, landed in January 2004 (mean value: 6.6%). at Gusev Crater and Meridiani Planum, respectively. Spirit traversed over 7.7 km through 2210 sols of sur- face operations, and Opportunity is currently on the degraded rim of Endeavour Crater after 4600 sols and 44 km of traverse.
    [Show full text]
  • Expressions of Climate Perturbations in Western Ugandan Crater Table 3
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Open Access Clim. Past Discuss., 9, 5183–5226, 2013 Climate www.clim-past-discuss.net/9/5183/2013/ Climate CPD doi:10.5194/cpd-9-5183-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions 9, 5183–5226, 2013 Open Access Open Access This discussion paper is/has been under review for the journal ClimateEarth of the System Past (CP). Earth System Expressions of Please refer to the corresponding final paper in CP if available. Dynamics Dynamics climate perturbations Discussions in western Ugandan Open Access ExpressionsGeoscientific of climate perturbationsGeoscientific inOpen Access crater Instrumentation Instrumentation K. Mills et al. western UgandanMethods and crater lake sedimentMethods and Data Systems Data Systems records during the last 1000 yr Discussions Open Access Open Access Title Page Geoscientific 1,2 1Geoscientific 1 3 4 K. Mills , D. B. Ryves , N. J. Anderson , C. L. BryantModel, and
    [Show full text]
  • Mars Reconnaissance Orbiter and Opportunity Observations Of
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mars Reconnaissance Orbiter and Opportunity 10.1002/2014JE004686 observations of the Burns formation: Crater Key Point: hopping at Meridiani Planum • Hydrated Mg and Ca sulfate Burns formation minerals mapped with MRO R. E. Arvidson1, J. F. Bell III2, J. G. Catalano1, B. C. Clark3, V. K. Fox1, R. Gellert4, J. P. Grotzinger5, and MER data E. A. Guinness1, K. E. Herkenhoff6, A. H. Knoll7, M. G. A. Lapotre5, S. M. McLennan8, D. W. Ming9, R. V. Morris9, S. L. Murchie10, K. E. Powell1, M. D. Smith11, S. W. Squyres12, M. J. Wolff3, and J. J. Wray13 1 2 Correspondence to: Department of Earth and Planetary Sciences, Washington University in Saint Louis, Missouri, USA, School of Earth and Space R. E. Arvidson, Exploration, Arizona State University, Tempe, Arizona, USA, 3Space Science Institute, Boulder, Colorado, USA, 4Department of [email protected] Physics, University of Guelph, Guelph, Ontario, Canada, 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 6U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA, 7 8 Citation: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA, Department Arvidson, R. E., et al. (2015), Mars of Geosciences, Stony Brook University, Stony Brook, New York, USA, 9NASA Johnson Space Center, Houston, Texas, USA, Reconnaissance Orbiter and Opportunity 10Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, 11NASA Goddard Space Flight Center, observations of the Burns formation: Greenbelt, Maryland, USA, 12Department of Astronomy, Cornell University, Ithaca, New York, USA, 13School of Earth and Crater hopping at Meridiani Planum, J.
    [Show full text]