Dynamic Algorithms for Partially-Sorted Lists Kostya Kamalah Ross
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coursenotes 4 Non-Adaptive Sorting Batcher's Algorithm
4. Non Adaptive Sorting Batcher’s Algorithm 4.1 Introduction to Batcher’s Algorithm Sorting has many important applications in daily life and in particular, computer science. Within computer science several sorting algorithms exist such as the “bubble sort,” “shell sort,” “comb sort,” “heap sort,” “bucket sort,” “merge sort,” etc. We have actually encountered these before in section 2 of the course notes. Many different sorting algorithms exist and are implemented differently in each programming language. These sorting algorithms are relevant because they are used in every single computer program you run ranging from the unimportant computer solitaire you play to the online checking account you own. Indeed without sorting algorithms, many of the services we enjoy today would simply not be available. Batcher’s algorithm is a way to sort individual disorganized elements called “keys” into some desired order using a set number of comparisons. The keys that will be sorted for our purposes will be numbers and the order that we will want them to be in will be from greatest to least or vice a versa (whichever way you want it). The Batcher algorithm is non-adaptive in that it takes a fixed set of comparisons in order to sort the unsorted keys. In other words, there is no change made in the process during the sorting. Unlike other methods of sorting where you need to remember comparisons (tournament sort), Batcher’s algorithm is useful because it requires less thinking. Non-adaptive sorting is easy because outcomes of comparisons made at one point of the process do not affect which comparisons will be made in the future. -
Teach Yourself Data Structures and Algorithms in 24 Hours
TeamLRN 00 72316331 FM 10/31/02 6:54 AM Page i Robert Lafore Teach Yourself Data Structures and Algorithms in24 Hours 201 West 103rd St., Indianapolis, Indiana, 46290 USA 00 72316331 FM 10/31/02 6:54 AM Page ii Sams Teach Yourself Data Structures and EXECUTIVE EDITOR Algorithms in 24 Hours Brian Gill DEVELOPMENT EDITOR Copyright © 1999 by Sams Publishing Jeff Durham All rights reserved. No part of this book shall be reproduced, stored in a MANAGING EDITOR retrieval system, or transmitted by any means, electronic, mechanical, photo- Jodi Jensen copying, recording, or otherwise, without written permission from the pub- lisher. No patent liability is assumed with respect to the use of the information PROJECT EDITOR contained herein. Although every precaution has been taken in the preparation Tonya Simpson of this book, the publisher and author assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use COPY EDITOR of the information contained herein. Mike Henry International Standard Book Number: 0-672-31633-1 INDEXER Larry Sweazy Library of Congress Catalog Card Number: 98-83221 PROOFREADERS Printed in the United States of America Mona Brown Jill Mazurczyk First Printing: May 1999 TECHNICAL EDITOR 01 00 99 4 3 2 1 Richard Wright Trademarks SOFTWARE DEVELOPMENT All terms mentioned in this book that are known to be trademarks or service SPECIALIST marks have been appropriately capitalized. Sams Publishing cannot attest to Dan Scherf the accuracy of this information. Use of a term in this book should not be INTERIOR DESIGN regarded as affecting the validity of any trademark or service mark. -
An Evolutionary Approach for Sorting Algorithms
ORIENTAL JOURNAL OF ISSN: 0974-6471 COMPUTER SCIENCE & TECHNOLOGY December 2014, An International Open Free Access, Peer Reviewed Research Journal Vol. 7, No. (3): Published By: Oriental Scientific Publishing Co., India. Pgs. 369-376 www.computerscijournal.org Root to Fruit (2): An Evolutionary Approach for Sorting Algorithms PRAMOD KADAM AND Sachin KADAM BVDU, IMED, Pune, India. (Received: November 10, 2014; Accepted: December 20, 2014) ABstract This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms (Root to Fruit (1): An Evolutionary Study of Sorting Problem) [1]and concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. Key words: Evolutionary study of sorting, History of sorting Early Sorting algorithms, list of inventors for sorting. IntroDUCTION name and their contribution may skipped from the study. Therefore readers have all the rights to In spite of plentiful literature and research extent this study with the valid proofs. Ultimately in sorting algorithmic domain there is mess our objective behind this research is very much found in documentation as far as credential clear, that to provide strength to the evolutionary concern2. Perhaps this problem found due to lack study of sorting algorithms and shift towards a good of coordination and unavailability of common knowledge base to preserve work of our forebear platform or knowledge base in the same domain. for upcoming generation. Otherwise coming Evolutionary study of sorting algorithm or sorting generation could receive hardly information about problem is foundation of futuristic knowledge sorting problems and syllabi may restrict with some base for sorting problem domain1. -
Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of Sorting Algorithms
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86 ISSN 2229-5518 Evaluation of Sorting Algorithms, Mathematical and Empirical Analysis of sorting Algorithms Sapram Choudaiah P Chandu Chowdary M Kavitha ABSTRACT:Sorting is an important data structure in many real life applications. A number of sorting algorithms are in existence till date. This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms concluded with the chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present an evolution of sorting problem and sorting algorithm on the time line. An extensive analysis has been done compared with the traditional mathematical methods of ―Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. Observations have been obtained on comparing with the existing approaches of All Sorts. An “Empirical Analysis” consists of rigorous complexity analysis by various sorting algorithms, in which comparison and real swapping of all the variables are calculatedAll algorithms were tested on random data of various ranges from small to large. It is an attempt to compare the performance of various sorting algorithm, with the aim of comparing their speed when sorting an integer inputs.The empirical data obtained by using the program reveals that Quick sort algorithm is fastest and Bubble sort is slowest. Keywords: Bubble Sort, Insertion sort, Quick Sort, Merge Sort, Selection Sort, Heap Sort,CPU Time. Introduction In spite of plentiful literature and research in more dimension to student for thinking4. Whereas, sorting algorithmic domain there is mess found in this thinking become a mark of respect to all our documentation as far as credential concern2. -
Fast Parallel Machine Learning Algorithms for Large Datasets Using Graphic Processing Unit Qi Li Virginia Commonwealth University
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by VCU Scholars Compass Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Fast Parallel Machine Learning Algorithms for Large Datasets Using Graphic Processing Unit Qi Li Virginia Commonwealth University Follow this and additional works at: http://scholarscompass.vcu.edu/etd Part of the Computer Sciences Commons © The Author Downloaded from http://scholarscompass.vcu.edu/etd/2625 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Qi Li 2011 All Rights Reserved FAST PARALLEL MACHINE LEARNING ALGORITHMS FOR LARGE DATASETS USING GRAPHIC PROCESSING UNIT A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. by QI LI M.S., Virginia Commonwealth University, 2008 B.S., Beijing University of Posts and Telecommunications (P.R. China), 2007 Director: VOJISLAV KECMAN ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE Virginia Commonwealth University Richmond, Virginia December, 2011 ii Table of Contents List of Tables vi List of Figures viii Abstract ii 1 Introduction 1 2 Background, Related Work and Contributions 4 2.1TheHistoryofSequentialSVM..................... 5 2.2TheDevelopmentofParallelSVM.................... 6 2.3 K-Nearest Neighbors Search and Local Model Based Classifiers . 7 2.4 Parallel Computing Framework ..................... 8 2.5 Contributions of This Dissertation .................... 10 3 Graphic Processing Units 12 3.1 Computing Unified Device Architecture (CUDA) .......... -
Comparison Sorts Name Best Average Worst Memory Stable Method Other Notes Quicksort Is Usually Done in Place with O(Log N) Stack Space
Comparison sorts Name Best Average Worst Memory Stable Method Other notes Quicksort is usually done in place with O(log n) stack space. Most implementations on typical in- are unstable, as stable average, worst place sort in-place partitioning is case is ; is not more complex. Naïve Quicksort Sedgewick stable; Partitioning variants use an O(n) variation is stable space array to store the worst versions partition. Quicksort case exist variant using three-way (fat) partitioning takes O(n) comparisons when sorting an array of equal keys. Highly parallelizable (up to O(log n) using the Three Hungarian's Algorithmor, more Merge sort worst case Yes Merging practically, Cole's parallel merge sort) for processing large amounts of data. Can be implemented as In-place merge sort — — Yes Merging a stable sort based on stable in-place merging. Heapsort No Selection O(n + d) where d is the Insertion sort Yes Insertion number of inversions. Introsort No Partitioning Used in several STL Comparison sorts Name Best Average Worst Memory Stable Method Other notes & Selection implementations. Stable with O(n) extra Selection sort No Selection space, for example using lists. Makes n comparisons Insertion & Timsort Yes when the data is already Merging sorted or reverse sorted. Makes n comparisons Cubesort Yes Insertion when the data is already sorted or reverse sorted. Small code size, no use Depends on gap of call stack, reasonably sequence; fast, useful where Shell sort or best known is No Insertion memory is at a premium such as embedded and older mainframe applications. Bubble sort Yes Exchanging Tiny code size. -
External Sorting Why Sort? Sorting a File in RAM 2-Way Sort of N Pages
Why Sort? A classic problem in computer science! Data requested in sorted order – e.g., find students in increasing gpa order Sorting is the first step in bulk loading of B+ tree External Sorting index. Sorting is useful for eliminating duplicate copies in a collection of records (Why?) Chapter 13 Sort-merge join algorithm involves sorting. Problem: sort 100Gb of data with 1Gb of RAM. – why not virtual memory? Take a look at sortbenchmark.com Take a look at main memory sort algos at www.sorting-algorithms.com Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Database Management Systems, R. Ramakrishnan and J. Gehrke 2 Sorting a file in RAM 2-Way Sort of N pages Requires Minimum of 3 Buffers Three steps: – Read the entire file from disk into RAM Pass 0: Read a page, sort it, write it. – Sort the records using a standard sorting procedure, such – only one buffer page is used as Shell sort, heap sort, bubble sort, … (100’s of algos) – How many I/O’s does it take? – Write the file back to disk Pass 1, 2, 3, …, etc.: How can we do the above when the data size is 100 – Minimum three buffer pages are needed! (Why?) or 1000 times that of available RAM size? – How many i/o’s are needed in each pass? (Why?) And keep I/O to a minimum! – How many passes are needed? (Why?) – Effective use of buffers INPUT 1 – Merge as a way of sorting – Overlap processing and I/O (e.g., heapsort) OUTPUT INPUT 2 Main memory buffers Disk Disk Database Management Systems, R. -
Teach Yourself Data Structures and Algorithms In24 Hours
00 72316331 FM 10/31/02 6:54 AM Page i Robert Lafore Teach Yourself Data Structures and Algorithms in24 Hours 201 West 103rd St., Indianapolis, Indiana, 46290 USA 00 72316331 FM 10/31/02 6:54 AM Page ii Sams Teach Yourself Data Structures and EXECUTIVE EDITOR Algorithms in 24 Hours Brian Gill DEVELOPMENT EDITOR Copyright © 1999 by Sams Publishing Jeff Durham All rights reserved. No part of this book shall be reproduced, stored in a MANAGING EDITOR retrieval system, or transmitted by any means, electronic, mechanical, photo- Jodi Jensen copying, recording, or otherwise, without written permission from the pub- lisher. No patent liability is assumed with respect to the use of the information PROJECT EDITOR contained herein. Although every precaution has been taken in the preparation Tonya Simpson of this book, the publisher and author assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use COPY EDITOR of the information contained herein. Mike Henry International Standard Book Number: 0-672-31633-1 INDEXER Larry Sweazy Library of Congress Catalog Card Number: 98-83221 PROOFREADERS Printed in the United States of America Mona Brown Jill Mazurczyk First Printing: May 1999 TECHNICAL EDITOR 01 00 99 4 3 2 1 Richard Wright Trademarks SOFTWARE DEVELOPMENT All terms mentioned in this book that are known to be trademarks or service SPECIALIST marks have been appropriately capitalized. Sams Publishing cannot attest to Dan Scherf the accuracy of this information. Use of a term in this book should not be INTERIOR DESIGN regarded as affecting the validity of any trademark or service mark. -
Lecture 7: Heapsort / Priority Queues Steven Skiena Department of Computer Science State University of New York Stony Brook, NY
Lecture 7: Heapsort / Priority Queues Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794–4400 http://www.cs.stonybrook.edu/˜skiena Problem of the Day Take as input a sequence of 2n real numbers. Design an O(n log n) algorithm that partitions the numbers into n pairs, with the property that the partition minimizes the maximum sum of a pair. For example, say we are given the numbers (1,3,5,9). The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and ((1,9),(3,5)). The pair sums for these partitions are (4,14), (6,12), and (10,8). Thus the third partition has 10 as its maximum sum, which is the minimum over the three partitions. Importance of Sorting Why don’t CS profs ever stop talking about sorting? • Computers spend a lot of time sorting, historically 25% on mainframes. • Sorting is the best studied problem in computer science, with many different algorithms known. • Most of the interesting ideas we will encounter in the course can be taught in the context of sorting, such as divide-and-conquer, randomized algorithms, and lower bounds. You should have seen most of the algorithms, so we will concentrate on the analysis. Efficiency of Sorting Sorting is important because that once a set of items is sorted, many other problems become easy. Further, using O(n log n) sorting algorithms leads naturally to sub-quadratic algorithms for all these problems. n n2=4 n lg n 10 25 33 100 2,500 664 1,000 250,000 9,965 10,000 25,000,000 132,877 100,000 2,500,000,000 1,660,960 1,000,000 250,000,000,000 13,815,551 Large-scale data processing is impossible with Ω(n2) sorting. -
Ijcseitr-Median First Tournament Sort
International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR) ISSN(P): 2249-6831; ISSN(E): 2249-7943 Vol. 7, Issue 1, Feb 2017, 35-52 © TJPRC Pvt. Ltd. MEDIAN FIRST TOURNAMENT SORT MUKESH SONI & DHIRENDRA PRATAP SINGH Department of Computer Science & Engineering, Maulana Azad National Institute of Technology, Madhya Pradesh, India ABSTRACT Rearrangement of things for making it more usable needs a mechanism to do it with a practically possible time. Sorting techniques are most frequently used mechanism used for rearrangement. Selection of a procedure to sort something plays vital role when the amount to be sorted is large. So the procedure must be efficient in both time and space when it comes to the matter of implementation. Several sorting algorithms were proposed in past few decades and some of them like quick sort, merge sort, heap sort etc. widely using in real life scenarios since they found their way to be top on the list of sorting mechanisms ever proposed. This paper proposing a Median first Tournament Sort which practically beats quick, merge, and heap sorting mechanisms in terms of time and number of swaps required to sort. KEYWORDS: Sorting, Median, Tournament tree, Merge Sort & Heap Sort Article Original Received: Dec 07, 2016; Accepted: Jan 25, 2017; Published: Feb 01, 2017; Paper Id.: IJCSEITRFEB20175 I. INTRODUCTION To process data collections like integer list of elements or a list of string (names), computers are used widely and a great portion of its time is taken away by maintaining the data to be processed in sorted order in the first place. -
Using Tournament Trees to Sort
Polvtechnic ' lnsfitute USING TOURNAMENT TREES TO SORT ALEXANDER STEPANOV AND AARON KERSHENBAUM Polytechnic University 333 Jay Street Brooklyn, New York 11201 Center for Advanced Technology In Telecommunications C.A.T.T. Technical Report 86- 13 CENTER FOR ADVANCED TECHNOLOGY IN TELECOMMUNICATIONS Using Tournament Trees to Sort Alexander Stepanov and Aaron Kershenbaum Polytechnic University 333 Jay Street Brooklyn, New York 11201 stract We develop a new data structure, called a tournament tree, which is a generalization of binomial trees of Brown and Vuillemin and show that it can be used to efficiently implement a family of sorting algorithms in a uniform way. Some of these algorithms are similar to already known ones; others are original and have a unique set of properties. Complexity bounds on many of these algorithms are derived and some previously unknown facts about sets of comparisons performed by different sorting algorithms are shown. Sorting, and the data structures used for sorting, is one of the most extensively studied areas in computer science. Knuth [I] is an encyclopedic compendium of sorting techniques. Recent surveys have also been given by Sedgewick [2] and Gonnet [3]. The use of trees for sorting is well established. Floyd's original Treesort 183 was refined by Williams 193 to produce Heapsort. Both of these algorithms have the useful property that a partial sort can also be done efficiently: i.e., it is possible to obtain the k smallest of N elements in O[N+k*log(N)] steps. (Throughout this paper, we will use base 2 logarithms.) Recently, Brown [6] and Vuillemin [7] have developed a sorting algorithm using binomial queues, which are conceptually similar to tournament queues, but considerably more difficult to implement. -
'Quicksort' and 'Quickselect'
Algorithms Seminar 2002–2004, Available online at the URL F. Chyzak (ed.), INRIA, (2005), pp. 101–104. http://algo.inria.fr/seminars/. Forty Years of ‘Quicksort’ and ‘Quickselect’: a Personal View Conrado Mart´ınez Universitat Polit`ecnica de Cataluny (Spain) October 6, 2003 Summary by Marianne Durand Abstract The algorithms ‘quicksort’ [3] and ‘quickselect’ [2], invented by Hoare, are simple and elegant solutions to two basic problems: sorting and selection. They are widely studied, and we focus here on the average cost of these algorithms, depending on the choice of the sample. We also present a partial sorting algorithm named ‘partial quicksort’. 1. ‘Quicksort’ and ‘Quickselect’ The sorting algorithm ‘quicksort’ is based on the divide-and-conquer principle. The algorithm proceeds as follows. First a pivot is chosen, with a specified strategy. Then all the elements of the array but the pivot are compared to the pivot. The elements smaller than the pivot are stored before the pivot, and the elements larger after the pivot. These two sub-arrays are then recursively sorted. We denote by Cn the average number of comparisons done to sort an array of size n, and πn,k the probability that the kth element is the chosen pivot in an array of size n. The recursive design of the algorithm is translated into a recurrence satisfied by the cost Cn: n X (1) Cn = n − 1 + tn + πn,k(Ck−1 + Cn−k). k=1 The value tn denote the cost, in terms of comparisons, of the choice of the pivot, that may depend on n.